

Learning to Program
in Perl

by Graham J El l is

Languages of the Web

Learning to Program in Perl

 version 1.7

Written by Graham Ellis

graham@wellho.net

Design by Lisa Ellis

Well House Consultants, Ltd.
404, The Spa, Melksham, Wiltshire SN12 6QL England

+44 (0) 1225 708 225 (phone)
+44 (0) 1225 707 126 (fax)

Find us on the World Wide Web at:

http://www.wellho.net

Or contact us at:

enquiries@wellho.net

Copyright © 2003 by Well House Consultants, Ltd.
Printed in Great Britain.

Printing History

May 1999 1.0 First Edition
February 2000 1.1 Minor additions
June 2000 1.2 Compliation of modules
October 2000 1.3 Name change, revisions
April 2002 1.4 Added modules
September 2002 1.5 Added modules
January 2003 1.6 Updated modules
February 2003 1.7 Updated modules

This manual was printed on 21 May 2003.

Notice of Rights

All rights reserved. No part of this manual, including interior design, may
be reproduced or translated into any language in any form, or transmitted
in any form or by any means electronic, mechanical, photocopying,
recording or otherwise, without prior written permission of Well House
Consultants except in the case of brief quotations embodied in critical
articles and reviews. For more information on getting permission for
reprints and excerpts, contact Graham Ellis at Well House Consultants.

This manual is subject to the condition that it shall not, by way of trade or
otherwise, be lent, sold, hired out or otherwise circulated without the
publisher's prior consent, incomplete nor in any form of binding or cover
other than in which it is published and without a similar condition including
this condition being imposed on the subsequent receiver.

Notice of Liability

All brand names and product names used in this book are trade names,
service marks, trademarks or registered trademarks of their respective
owners. Well House Consultants is not associated with any product or
vendor in this book and where such designations appear in this book, and
Well House Consultants was aware of a trademark claim, the designa-
tions have been appropriately capitalised. Well House Consultants
cannot attest to the accuracy of this information and use of a term should
not be regarded as affecting the validity of any trademark or service mark.

The information in this book is distributed on an "as is" basis, without
warranty. Whilst every precaution has been taken in the preparation of
this manual, neither the author nor Well House Consultants assumes
responsibility for errors or omissions, nor shall be liable to any person or
entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described herein.

Learning to Program in Perl 3

Table of Contents

1 Introduction . 9

1.1 What is Perl? . 9
1.2 Perl Platforms . 11
1.3 Perl Versions . 11
1.4 Examples of Perl in use . 15

2 Hello Perl World. 17

2.1 Let's study a first program. 17
2.2 Summary . 21

Exercise . 22

3 Variables and Operations . 23

3.1 Reading from the user . 23
3.2 More about variables . 24
3.3 How do I do calculations?. 27
3.4 Summary . 29

Exercise . 30

4 Perl Fundamentals. 31

4.1 First Perl program . 31
4.2 Comments and documentation. 32
4.3 Summary . 38

Exercise . 38

4.4 Reading data . 39
4.5 Summary . 42

Exercise . 42

5 More about the Perl Environment 43

5.1 Integrating your program with your computer 43
5.2 Unix and Linux systems . 43
5.3 Windows 98, 2000 and Windows NT systems . . . 45
5.4 MS-DOS users . 47
5.5 Macintosh . 47
5.6 The compiler and the interpreter. 47
5.7 Some questions on compilers and interpreters . . 48
5.8 Debugging tools . 49
5.9 Summary . 51

Exercise . 52

6 Conditionals and Loops . 53

6.1 The "if" statement . 53
6.2 The "while" statement . 54
6.3 Shorthand operators . 56
6.4 Ways of writing numbers 59
6.5 Summary . 59

Exercise . 60

Contents

4 Well House Consultants

7 Analysing a Programming Task 61

7.1 A small job . 61

Exercise . 67

7.2 As a job gets larger. 67
7.3 Summary . 71

Exercise . 72

8 Initial String Handling . 73

8.1 String handling functions 73
8.2 String handling operators 74
8.3 Comparing strings exactly 76
8.4 Comparing strings to regular expressions 77
8.5 Summary . 83

Exercise . 84

9 More Loops and Conditionals . 85

9.1 The variety that is Perl . 85
9.2 More conditional statements. 85
9.3 More loop statements . 89
9.4 Breaking a loop. 90
9.5 Labels . 91
9.6 The goto statement. 92
9.7 Summary . 93

Exercise . 94

10 File Handling . 95

10.1 File input and output . 95
10.2 File testing . 99
10.3 Formatted printing. 100
10.4 Summary . 103

Exercise . 104

11 Lists . 105

11.1 Basics . 105
11.2 The length of a list . 107
11.3 Context . 108
11.4 Summary . 110

Exercise . 111

11.5 Functions that operate on lists 112
11.6 Iterating through a list . 114
11.7 List slices . 116
11.8 Anonymous lists . 117
11.9 Summary . 117

Exercise . 118

12 Subroutines in Perl . 119

12.1 What are subroutines and why? 119
12.2 Calling a subroutine . 121
12.3 Writing your own subroutine 123
12.4 Writing subroutines in a separate file 125
12.5 Scope . 127

Exercise . 130

12.6 packages . 131
12.7 Calling objects . 134

Contents

Learning to Program in Perll 5

12.8 Writing a class – an introduction. 136

13 Special Variables . 137

13.1 The Command line . 137
13.2 Information variables . 138
13.3 Behaviour changing variables. 139
13.4 The default input and pattern match space 141
13.5 More options on Perl's command line. 143
13.6 Others . 143
13.7 Summary . 144

Exercise . 144

14 Hashes . 145

14.1 Setting up a hash . 145
14.2 Accessing a hash . 146
14.3 Processing every element of a hash. 147
14.4 Ordering a hash (sorting) 149
14.5 Programming techniques 153
14.6 Special hashes . 156
14.7 Summary . 159

Exercise . 160

15 More on Character Strings . 161

15.1 Summary to date . 161
15.2 Extracting information from a match 162
15.3 More about regular expressions 164
15.4 Match modifiers . 166
15.5 Alternative delimiters . 168
15.6 Some favourite regular expressions 168

Exercise . 172

15.7 Substitutions . 173
15.8 Regular expression efficiency. 175
15.9 tr . 176
15.10 Handling binary text . 176
15.11 Summary . 178

Exercise . 180

16 HTML – Quick Reminder . 181

16.1 Tags . 181
16.2 Structure of a page . 181
16.3 Special Characters and new lines 181
16.4 Some common tags . 182
16.5 Lists, Tables, Frames, Forms, Images etc 183
16.6 Which HTML standard? 184

17 Perl on the Web . 185

17.1 The HTML form. 185
17.2 Inputs . 186
17.3 Outputs . 186
17.4 All together!. 187
17.5 The power of using Perl on the Web 188
17.6 A real example of Perl on the Web 188
17.7 Summary . 195

Exercise . 196

Contents

6 Well House Consultants

18 System Dependencies. 197

18.1 The Philosophy . 197
18.2 Shell access . 198
18.3 System database enquiries 200
18.4 How Perl helps on crossplatform requirements . 201
18.5 Summary . 204

19 More than Simple Lists and Hashes! 205

19.1 Multidimensional arrays 205
19.2 Something more complex 207
19.3 Grouping in Perl . 209
19.4 Interpreting a complex reference to a variable . . 210
19.5 Design MATTERS . 211
19.6 Summary . 211

Exercise . 212

20 Handling Dates and Time . 213

20.1 So far . 213
20.2 How Perl handles dates and times 214
20.3 Convertors . 215
20.4 Handling centuries . 217
20.5 Elapsed time sleep . 217
20.6 Summary . 219

Exercise . 220

21 Practical Example – Perl in use 221

21.1 The requirement . 221
21.2 Plain Old Documentation (POD). 231
21.3 Possible enhancements 231

22 Libraries and Resources. 233

22.1 Standard Perl modules . 233
22.2 The CPAN. 236
22.3 Utility programs. 237
22.4 Documentation . 238
22.5 Web resources . 239
22.6 Newsgroups . 239
22.7 Chat . 241
22.8 Books . 242
22.9 Meeting users, getting local support and training 242

23 Perl 6 Look Ahead . 243

23.1 Objects . 243
23.2 Operators . 244
23.3 Data Types . 246
23.4 Bindings . 246
23.5 Conditionals and loops . 248
23.6 Exception handling . 250
23.7 Rules and grammar . 251
23.8 Under the bonnet . 253
23.9 Conclusion . 254

24 A Quick Look Ahead . 255

24.1 Fundamental and advanced topics. 255

Contents

Learning to Program in Perll 7

24.2 Other facilities in the Perl language 256
24.3 Other facilities in Perl – further modules. 260
24.4 Perl in other guises . 263
24.5 And also . 264

Appendix. 265

Exercise sample answers 265
CPAN sites . 271
Common Errors in Perl 273

WHC Library . 275

Index . 281

Contents

8 Well House Consultants

Learning to Program in Perl 9

1 Introduction

1.1 What is Perl?

Perl is a computer language

You write a series of instructions and the computer then
performs them. Unless you state otherwise, statements are
performed in order. You can, though, have conditional code, loops
and calls to blocks of code elsewhere just as in other languages.

Indeed, Perl has much more in its language than most other
programming languages. It's both eclectic (many ways of doing
things from many different sources) and wide ranging in itself. And
there are a lot of other resources available to let it go even further.

What does Perl cost?

Perl itself costs nothing. It's distributed under an artistic license

1

which gives you the right to copy and use it for free under most
conditions, and even to modify it in many circumstances!

What is Perl used for?

Deep breath. Anything. Everything.
Seriously, though ...

• Data manipulation

• Installation scripts

• System management

• Daemons

• Network services

• World Wide Web interaction

• Database interfacing

What computer do I need to run Perl?

Perl is a very efficient language. You don't need anything too
powerful and it runs cross-platform. Common and supported ports
include:

• Windows 95, 98, 2000, ME, NT and XP

• Solaris 2.x, Solaris 7, Solaris 8 and Solaris 9

• MacOS (from System 7, including OSX)

• Linux (All flavours including Mandrake, SuSE, Redhat, and
Caldera)

• AIX3, 4

• SunOS 4.1.x

• Free/Open/Net BSD

• Irix 4, 5, 6

• Ultrix 4

• HPUX 9, 10

1

the full text is on our server

{implementation

has been verified

for this course

Chapter 1 P201

10 Well House Consultants

• Digital UNIX / DEC OSF/1 1, 2, 3, 4

• Ms-Dos

• Windows 3.1

• Amiga

• AS400

• VMS

• Tandem Guardian

• MVS

• Lynxos

• Novell Netware

• NextStep

• OS2

• Acorn RiscOS

• Siemens Sinix

• SCO Unixware

And it runs virtually the same way on all platforms!

Is Perl loaded onto my computer?

If Perl is loaded, it's very likely you can just type in

 perl

at a
command prompt.

 It's also possible that it is loaded, but under a different name,
or not in your "path", i.e. where your computer looks for executable
programs. This is system-dependent; it varies not only from one
manufacturer's computer to the next, but can also be varied by
how the system administrator has configured things.

 If you're not sure if Perl is available on your computer, ask your
system or network administrator. Even though Perl hasn't been
explicitly installed, it's often there; it's included in Linux distribution,
it comes with many commercial packages as an installation
language, etc.

 When you just type in

 perl

, the cursor will hang.
 What's gone wrong?
 Nothing!
 Just typing in

 perl

starts the Perl language; you may now
type in a program at the command line. When you're finished
typing, enter an end-of-file and the program is interpreted and run.

 Let's try that:

graham@otter:~>

 perl

print 5 + 5;

print " something\n";

^D

10 something

graham@otter:~>

or, at a different type of prompt:

C:\>

 perl

print 5 + 5;

print " something\n";

^Z

10 something

C:\>

P201 Introduction

Learning to Program in Perl 11

On systems running Linux and Solaris, enter

 [Control]D

for
end of file. On Win32 systems (Windows 98, Windows 2000,
Windows NT, Windows XP, etc.), use

 [Control]Z

instead.

1.2 Perl Platforms

Perl runs on a wide variety of different computers and operating
systems, and the programs are remarkably portable. For example,
the author of these notes uses a Perl program to collect his email
when he's away from the office. The same program runs without
alteration on Windows, Unix and Linux systems, and it's the type
of program that, in other languages, would be hard to transfer
around.

Perl originated as a freely distributed (open source) program
from a Unix environment, in 1988. In the early days, if you wanted
Perl you downloaded it through a modem, in source code (it's
written in C), compiled it, and installed it. You can still download it
from the Internet in source form and do that if you wish, but you
may already have it anyway. Various parties have come to realise
what an advantage it is to supply Perl as a part of their product.

Perl on Unix

Perl can be downloaded for all common and modern versions
of Unix and Unix derivatives, as well as many older and more
obscure versions. The installation procedures will compile Perl for
you, and will tune it for your particular operating system.

Users of Sun's Solaris 8 and 9 operating systems will find that
Perl is now shipped as a standard part of the operating system.

Perl on Linux

Perl is a necessary part of the Linux operating system. There’s
no need to question whether you have it or not if you're running
Linux, it will be there!

Perl on Windows

If you're using Windows NT, you'll find Perl is shipped by Micro-
soft on the optional software CD.

For other Windows operating systems, a pre-compiled, easy-
to-install version can be downloaded from the ActiveState web site
at no charge. ActiveState is sponsored by Microsoft.

Perl on the Macintosh

If you're running an operating system up to and including OS9,
you'll find links from the various Perl web sites to "MacPerl" which
you can download and install.

On OSX (also known as OS10), Perl is supplied as standard
with its Unix-based operating system.

1.3 Perl Versions

The current stable version of Perl is Perl 5.8.0 (July, 2002). The
previous version was 5.6.1.

Prior to version 5.6.0, a different numbering system was used.
If you have versions 5.004 or 5.005, they're quite recent. We
suggest that you don't upgrade unless you need to use facilities
that have been added in the very latest versions.

Chapter 1 P201

12 Well House Consultants

Versions with an odd number in the second position (e.g. 5.9.0)
are often available, and with a higher release number too. The odd
number signifies a development release, and the majority of our
trainees should stick with the latest production version even if it
appears to be older.

There may be a 5.10 release of Perl at some stage and there
will be a Perl 6. This will be a rewrite; some features that have
become time-expired will be removed from the language, and a
number of converter tools are also to be provided to allow you to
convert Perl 5 code to work in Perl 6. O'Reilly are publishing a
book on Perl 6 (Perl 6 Essentials, ISBN 0-596-00499-0) in July,
2003 to give a detailed look ahead to Perl6; your tutor will give you
an update during your course on the development, and our "Of
Course" magazine, published twice a year, will also give you news
if you're on our mailing list.

Older Versions

It's possible that you're still using version 4 of Perl. Perl 4 was
a smaller language (without object orientation). It is integrated into
a number of commercial products, and it's also faster to start on
heavily loaded computers. Perl 4.019 and 4.036 are good, stable
languages. Please let your tutor know if you're using one of these
and he will tell you which of the facilities on your course are not
going to be available to you.

If you're running Perl 5.0 through 5.003, you'll probably want to
upgrade to the current release soon. Whilst they're good and
stable versions, on balance you would be best to upgrade.

P201 Introduction

Learning to Program in Perl 13

 How do I find what version I have?

Windows 98 / Windows 2000 / Windows NT

C:\>

perl -v

This is perl, version 5.005_02 built for MSWin32-

x86-object (with 1 registered patch, see perl -

V for more detail)

Copyright 1987-1998, Larry Wall

Binary build 509 provided by ActiveState Tool

Corp. http://www.ActiveState.com

Built 13:37:15 Jan 5 2003

Perl may be copied only under the terms of either

the Artistic License or the GNU General Public

License, which may be found in the Perl 5.0

source kit. Complete documentation for Perl,

including FAQ lists, should be found on this

system using 'man perl' or 'perldoc perl'. If

you have access to the Internet, point your

browser at http://www.perl.com/, the Perl Home

Page.

C:\>

Linux

$ perl -v

This is perl, v5.6.0 built for i386-linux

Copyright 1987-2000, Larry Wall

Perl may be copied only under the terms of either

the Artistic License or the GNU General Public

License, which may be found in the Perl 5.0

source kit.

Complete documentation for Perl, including FAQ

lists, should be found on this system using ̀ man

perl' or ̀ perldoc perl'. If you have access to

the Internet, point your browser at http://

www.perl.com/, the Perl Home Page.

$

Solaris
seal% perl -v

This is perl, version 5.003 with EMBED

built under solaris at Jan 30 1997 21:13:45

+ suidperl security patch

Copyright 1987-1996, Larry Wall

Perl may be copied only under the terms of either

the Artistic License or the GNU General Public

License, which may be found in the Perl 5.0

source kit.

seal%

Chapter 1 P201

14 Well House Consultants

Macintosh
On the Mac, with its pure graphic interface, find the folder with

the MacPerl application, highlight the application icon (a camel
and a pyramid!), select "File" and "Get Info" from the top menu bar.

Figure 1

Open MacPerl by double-clicking on the
application icon. Find out what version you are
running via "Get Info".

P201 Introduction

Learning to Program in Perl 15

1.4 Examples of Perl in use

Let's log in.

You log in as ____________________________________ (please write your account name here1)

A window will appear with your computer name2 as the prompt.
Move the mouse into this window and type:

calc

and press the [return] or [enter] key.

Calculator

Our little calculator can take sums entered on the
command line3 and print out the results.

If you just typed calc and pressed [return],
you'll be prompted to enter a sum, and the result will
be printed. You can then do a series of calculations
... just keep typing them in. When finished, just
press [return] on its own. The result on the last
calculation can be used in the next one by using the
$ character.

Screen locator and counter

Another Well House Consultants’ activity is
providing support for a product called "RasterFlex"
which allows users to add extra screens to their
workstations.

To check the installation has worked, we use a script to search
for and report the names and numbers of screens that the oper-
ating system can see:

1 Example: p1
2 Our computers are usually named after fish, like "cod".

seal% calc 6 + 7 + 7 + 7 + 7

calc: Copyright Well House Consultants 2003

result: 34

seal% calc

calc: Copyright Well House Consultants 2003

Calculate what: 6 + 4 * 7

result: 34

Calculate what: $/5

result: 6.8

Calculate what:

seal%

Figure 2

This example was run on "seal", a Unix workstation
running Solaris.

3 i.e. after the word "calc" but before you pressed [return]

seal% s_c3

screen found: VITec,RasterFLEX-HR0 at sbus0: SBus slot 2 0x0 SBus level 5 sparc ipl 7

That is /devices/sbus@1,f8000000/VITec,RasterFLEX-HR@2,0

it is known as /dev/fb /dev/rfx0 /dev/fbs/rfx

screen found: cgsix0 at sbus0: SBus slot 3 0x0 SBus level 5 sparc ipl 7

That is /devices/sbus@1,f8000000/cgsix@3,0

it is known as /dev/fb1 /dev/fbs/cgsix0

system appears to have 2 screens

seal%

Figure 3

Running the screen locator

Chapter 1 P201

16 Well House Consultants

A talker

One of our servers is permanently
running a Perl script and anyone who
wants on our LAN can connect and use it
as a general talking board. Here's a
sample:

A changing web page

The illustration below shows a page
that changes whenever you request a
certain category of shops.

We don't have to prepare all the pages
ahead of time; we simply divert requests
for this page to a Perl script which gener-
ates them on the fly, according to
whatever the user has requested.

Let's get on to the fundamentals of the language now. We're
assuming for the purpose of this course that you’ve already had
some practical programming experience.

Figure 4

Running the talker

flipper% telnet lecht 7777

Trying 192.168.200.130...

Connected to lecht.

Escape character is '^]'.

*** flipper has come online ***

Link Established! .q to quit, .w for who

.w

flipper enquires who: flipper

*** dolphin has come online ***

dolphin enquires who: dolphin flipper

Hi there, Dolphin! How’s the course going?

flipper: Hi there, Dolphin! How’s the course going?

dolphin: .name peacock

Test OK ... Thanx!

flipper: Test OK ... Thanx!

dolphin: you see my "attempts" too...not fair!

.q

Connection closed by foreign host.

flipper%

Figure 5

This page changes according to the
user’s request.

Learning to Program in Perl 17

2 Hello Perl World

2.1 Let's study a first program

Here's the code that we've edited into a file called "hello".

Copyright - Well House Consultants, 2003

Perl Basics - first program!

print "Hello; Welcome to this Perl course ";

How do we enter our program?

You can use any text editor you like ... a point-and-click editor
such as Notepad on a PC, SimpleText on a Macintosh, or Textedit
on a Unix box, through to a more sophisticated editor such as vi or
emacs. Provided you produce a text file, it doesn't matter!

We don't want this to become a course in operating systems
and editors, so we've wrapped a point-and-click editor under the
name "edit" on your workstation. It will be at the command line, in
a pull-down menu, or both!

Users familiar with vi may use that editor on our Unix and Linux
boxes.

When you've finished typing in a program, save it away in a file.
Why? Because when you run a program, the file is read and the
instructions in that file are performed. If you forgot to save the file,
you'll be running the previous version!

At the moment, you can choose to give the file any name you
like as long as it's acceptable to the computer. Later you'll learn
that there sometimes are rules to file names you must stick to in
certain circumstances.

How do we run our program?

By typing in the word perl followed by the name of the file
into which we've saved the program.1

Let's run the example of the "hello" program we listed out
above. Firstly on "coypu" (our Microsoft Windows machine):

C:\perlcourse>perl hello

Hello; Welcome to this Perl course

C:\perlcourse>

and then on "seal" (our Unix box):

seal% perl hello

Hello; Welcome to this Perl course seal%

Good. It works on both of them. But, notice the two different
prompts and where the new lines end up.

What were the components of that program file we typed in?

If you're familiar with word processors such
as Microsoft Word and wish to use them ...
usually you can, provided that you save just
the text without all the formatting information.
In Word, do that by saving as "MS-DOS Text
with Line Breaks". If you use "Text Only" you'll
have a problem with smart quotes and other
similar facilities!

You may get a warning message that you'll
be losing formatting information when you
save in this way. Yes, you WILL loose that
information ... but then, perl doesn't want it!

1 You'll learn tomorrow how to run your program without having to type the word
"perl" every time!

Chapter 2 P102

18 Well House Consultants

• Executable Statements

At least one executable statement (something that the
computer will execute when the program is run).

How this statement is written must be correct in format.1 If you
get it wrong, either the program will do the wrong thing, or it won't
run at all -- it will just display an error message.

In the case of our first program, there's just one executable
statement:
print "Hello; Welcome to this Perl course ";

and it's made up of three parts.
The first two will vary from one statement to the next. Here we

have print telling Perl to
1) print the following part(s) and
2) " " -- a literal string of text to be printed.
All statements should end with a ";" character so that Perl

knows where one statement ends and the next begins.

• Comments

If this is your first time programming, you'll find it very useful
being able to add some information that Perl does not read. A
comment allows you to document what the command is doing so
that the program will be easy to understand if you or someone else
has to come back to it.

If you've programmed before, you already know it's worth
spending a little time ensuring your programs are well commented
unless they’re going to be used just once or twice and then thrown
away.

In our Perl example, a comment is started by a # character.

Example:
print "Greetings";

Say hi to the user!

You can also add comments onto the end of a line by adding a
space character followed by a # and then your comment.

Example:
print "Greetings"; # Say hi to the user!

Although the syntax of Perl demands that you put spaces in
certain places, and that you don't put them in certain others,2 you
can often add spaces where you like.

And that can be any number of spaces, or any other white
space characters such as tabs, new lines and line feeds.

You can put several statements on one line, or split a statement
over several, or inset a series of statements from the left margin
so that the human reader can see that they go together.

Perl doesn't care about comments, but you and subsequent
human readers do!

1 Its "syntax"
2 Don’t start splitting up the word "print" for example.

P102 Hello Perl World

Learning to Program in Perl 19

How do I do more than one thing in a program?

Simply place several statements in your program file. Perl will
run the statements in turn, and in that same order.

hello_again - second program!

Good idea to say what the program does,

who wrote it, which version it is ...

print# message to user

"Hello; Welcome to this Perl course. ";

print# another message to user

"We'll do an exercise soon. ";

We'll make it more interesting soon!

What if I make a mistake?

There are two types of mistakes you can make as you enter
your program, syntax errors and errors of meaning.

• Syntax errors

In such a case, Perl won't understand your program.
Let's make an intentional error:

wrong - program with a mistake!

print # message to user

"Hello; Welcome to this Perl course. "

print # another message to user

"We'll do an exercise soon. ";

The error is tiny (can you spot it?), but when I try and run it:

The code doesn't run.
Solution:

- Pull the file into an editor

- Find the error

- Correct the error, save the code, run it again!

graham@otter:profile/book> perl hello_again

Hello; Welcome to this Perl course. We'll do

an exercise soon.

graham@otter:profile/book>

Figure 6

Running "hello_again" using Linux this time.

graham@otter:profile/book> perl wrong

syntax error at wrong line 5, next token???

Execution of wrong aborted due to compilation errors

graham@otter:profile/book>

Figure 7

Running "wrong" to illustrate an error
message.

Chapter 2 P102

20 Well House Consultants

• Errors of meaning

What happens when Perl can understand your program, but
you've not asked it to do the right thing? Here's an example:

poor - program with a mistake!

print# message to user

Hello ;

print# another message to user

"We'll do an exercise soon. ";

When it runs, we get:

It HAS run. And at first glance you might say "fine". But it isn't.
The word "Hello" didn't print out. Why?

YOU MUST CHECK THAT YOUR PROGRAM DOES
EXACTLY WHAT YOU WANT.

Some languages will spot a lot of errors, but Perl has so many
facilities that making a small change often causes not an ILLEGAL
syntax, but means something different but still LEGAL. And even
if you do something silly, Perl assumes you know what you're
doing.

You can specify options on the Perl command line to tell the
language to behave in different ways. If you run it with -w you'll
be able to get Perl to give you warnings about legal things you're
doing that are silly / dangerous / a bit odd. Let's try that on our
latest example:

Well, that certainly shouted about "Hello" didn't it?
As you learn more about Perl during this week, you'll come to

understand the other terms such as main:: and "file handle"
that have cropped up. [After all, you did just used a facility you
didn't even know existed!]

graham@otter:profile/book> perl poor

We'll do an exercise soon.

graham@otter:profile/book>

Figure 8

Running "poor" to illustrate an error message.

graham@otter:profile/book> perl -w poor

Name "main::Hello" used only once: possible typo at poor line 3.

Filehandle main::Hello never opened at poor line 2.

We'll do an exercise soon.

graham@otter:profile/book>

Figure 9

Running "poor" with a -w
option to find where the error
occurred.

P102 Hello Perl World

Learning to Program in Perl 21

What if I want to print on several lines?

You could place a new line character into a double-quoted
string, but it would mean the source code doesn't look good.

Perl provides a special way of writing a new line:

\n

Since the backslash itself is a special character, the way to
write a "\" character within Perl is to use two backslashes together
(\\).

2.2 Summary

• Use your favourite editor to write a Perl program to a plain text
file.

• Run that program by typing in perl <program name>
(where "program name" is the name you've given the file).

• If the program's syntax is correct, the instructions it contains are
performed; otherwise it gives an error message or performs the
function incorrectly.

• perl -w can be used to give warning messages if you're
doing something odd.

Within the Perl program, you have:

executable statements ending with ;

comments staring with #

The executable statement we used was the word print
followed by a constant string of text we wanted to print, written in
double quotes. We can use most characters directly, but there are
some specials:

\n new line

\\ backslash

\" double quote character

\$ dollar character

You can place white space almost anywhere you like in your
program to aid readability.

Chapter 2 P102

22 Well House Consultants

Exercise

Change to the trainee area of your account1 before you do this exercise.

• Set up a Perl script yourself (call it "mine") to print out your name.

• Run it; check it worked correctly.

Our example answer is mine

This is what your results could look like:

1 Just type in trainee at the command line.

Sample

graham@otter:profile/answers> perl mine

Hello Pooh Bear. There's honey in the larder!

graham@otter:profile/answers>

Learning to Program in Perl 23

3 Variables and
Operations

3.1 Reading from the user

You will naturally want to do more than just print text. After all,
a plain word processor can do this. You’ve come on this course to
learn how to write a program whose action varies depending on
what is entered, such as reading in information from a person
running your program.

Let's go through this process step by step:

1) Prompt the user so that he knows he has to enter something.
print "please enter your name: "; 1

2) Read from the keyboard.2

By putting < and > around it, we say "read from"
3) Store away the result of this operation, using what we call an "

assignment". On the right-hand side of an equals sign (=), we
write the read operation from stage 2.
On the left-hand side ...

4) The assignment needs to know where we want to store the
information. We don't have to give some highly technical
computer memory location code. Instead, we choose a name
ourselves that's relevant to the application. We must, though,
put a $ character in front of it so that Perl knows it's the name
for a memory slot, the contents of which can vary.

$users_name = <STDIN> ;

To show this has worked, we'll now print out the contents of the
variable. It's a print statement like we used before, but rather
than a constant string of text, we'll print the variable's contents:

print $users_name;

Here's the whole program:

greeting - read the user name and

echo it back in a greeting!

input

print "please enter your name: ";

$users_name = <STDIN> ;

output

print "This is a program to greet ";

print $users_name;

print "on this course\n";

1 Note: Don’t add a new line, but do leave a space after the last word.
2 The keyboard is known as STDIN. It’s something called a "file handle" that

we’ll explore later.

graham@otter:profile/book> perl greeting

please enter your name: Pooh

This is a program to greet Pooh

on this course

graham@otter:profile/book>

Figure 10

Running Perl program "greeting".

Chapter 3 P103

24 Well House Consultants

3.2 More about variables

We've read into a variable and printed out its contents.

What are the rules for choosing a name for a variable?

• Variables of this type have names that start with $.

That's to distinguish them from other parts of the Perl language.

• The $ must be followed by a letter (upper or lower case).

• Then any combination of letters, digits, underscores.

• Names are case significant.

Some suggestions:

- be descriptive

- make it not too long, but not too short

- avoid too many similar names for variables

Whilst you can use almost any variable name you wish, you'll
learn as you go on that some names have special significance and
so ... a further suggestion:

- avoid names that have other uses such as $a, $b,
$MATCH, $RS and $ARGV.

Apart from $a and $b, you should be safe if you use
any lower case letters!

How much information can a variable contain?

You can put as much text as you like into a variable -- up to the
memory capacity of your computer.1

Do I have to tell Perl about a variable before I use it?

No, just use the name and Perl will create it as the program
runs, making it large enough to take the text that was entered.

Can I reuse a variable?

Yes, if you put something into a variable which already exists
and has text in it, the old contents will be lost and the new contents
stored. Perl even shortens or lengthens the variable if you've
assigned less or more text this time.

1 And sometimes beyond its capacity if it uses "swap space" on disk when
memory gets full.

P103 Variables and Operations

Learning to Program in Perl 25

Can I copy a variable?

You can copy the contents of a variable. Study this example
and see if you can work out what's happening.

couple - reads two names and echos them

input

print "please enter first name: ";

$users_name = <STDIN> ;

$first_name = $users_name;

print "please enter second name: ";

$users_name = <STDIN> ;

$second_name = $users_name;

output

print "This is a program to greet ";

print $first_name; print " and ";

print $second_name;

print " on this course\n";

 In normal practice, we would have read straight into
$first_name and $second_name, but then we wanted to illus-
trate the points we've just been talking about. Let's see that in
action:

That’s good, but I think you might have hoped for a one-line
greeting such as:

What happened?

The new line problem

Why are all the extra lines on my output?

graham@otter:profile/book> perl couple

please enter first name: Christopher

please enter second name: Pooh

This is a program to greet Christopher

and Pooh

on this course

graham@otter:profile/book> perl couple

please enter first name: Pooh

please enter second name: Christopher

This is a program to greet Pooh

and Christopher

on this course

graham@otter:profile/book>

Figure 11

Running Perl program "couple".

graham@otter:profile/book> perl couple

please enter first name: Pooh

please enter second name: Christopher

This is a program to greet Pooh and Christopher on this course

graham@otter:profile/book>

Figure 12

Running Perl program
"couple" as though it output a
continuous line.

Chapter 3 P103

26 Well House Consultants

What did your user enter when prompted for the first name?
P-o-o-h-[enter]

So what was saved into the variable $users_name?
P-o-o-h-[enter]

So what was copied into the variable $first_name?
P-o-o-h-[enter]

So what was printed when that variable's contents were printed?
P-o-o-h-[enter]

EXACTLY!

How can I get rid of that new line character?

You can do things to change the contents of variables; much of
programming is about doing that, and one of the functions that's
built into Perl is chop.

chop $first_name;

means:

• Take the contents of the variable $first_name

• Remove the last character

• Store the result back into $first_name (overwriting the old
value)

So ... this program:

one_line - two names are echoed back on one line

input

print "please enter first name: ";

$users_name = <STDIN> ;

$first_name = $users_name;

print "please enter second name: ";

$users_name = <STDIN> ;

$second_name = $users_name;

manipulation

chop $first_name;

chop $second_name;

output

print "This is a program to greet ";

print $first_name;

print " and ";

print $second_name;

print " on this course\n";

is run as:

graham@otter:profile/book> perl one_line

please enter first name: Christopher

please enter second name: Pooh

This is a program to greet Christopher and Pooh on this course

graham@otter:profile/book>

Figure 13

Running Perl program
"one_line"

P103 Variables and Operations

Learning to Program in Perl 27

3.3 How do I do calculations?

 You've seen a number of operations already ...

print write a variable or constant out

chop remove last character from a variable

< ... > read in from a file handle

= save what's on the right into a variable named on
the left

Arithmetic operations

You can also perform arithmetic operations on the contents of
variables:
$difference = $age1 - $age2 ;

Let's see it in action:

ages - compare two ages

input

print "please enter first age: ";

$age1 = <STDIN> ;

print "please enter second age: ";

$age2 = <STDIN> ;

get difference

$difference = $age1 - $age2 ;

output

print "The second person is ";

print $difference;

print " years younger than the first\n";

You'll notice that we didn't have to do anything special to
convert the strings of text that were entered into numbers; no need
to chop or anything.

If we do a subtraction, Perl knows it's an arithmetic operation
and extracts the numbers from the strings of text that were typed
in. That also means it gets rid of the new line characters as part of
the subtraction so that after the subtraction line, the variables
contain:
$age14-6-[return](held as a string)
$age24-3-[return](held as a string)
$difference3 (held as a number)

Other calculations include:

+ addition

* multiplication (not "x" for multiply!)

/ division

Several operations at the same time?

Yes, you can. You can write a complicated expression involving
as many operators, constants and variables as you like!

Perl has a complex set of rules to tell it in what order all the
operators should be carried out.

graham@otter:profile/book> perl ages

please enter first age: 46

please enter second age: 43

The second person is 3 years younger than the first

graham@otter:profile/book>

Figure 14

Running Perl program "ages"

Chapter 3 P103

28 Well House Consultants

The operators you've met so far are executed in the following
order:

< ... > order irrelevant

* and / left to right

+ and - left to right

= right to left

Let's work out the average age of two people:

average - average 2 ages

input

print "please enter first age: ";

$age1 = <STDIN> ;

print "please enter second age: ";

$age2 = <STDIN> ;

get average

$average = $age1 / 2 + $age2 / 2 ;

output

print "The average age is ";

print $average; print "\n";

Can I change the order things are done within a statement?

Yes, you can. You can use round brackets () to change the
order of evaluation. Instructions within inner brackets are
performed first.

Just as you can change the order in which operations, such as
+ and - are performed, you can also change the order in which
functions such as chop and print are performed.

While we're busy reducing the number of statements (but also
making them more complex), it would be a good time to reduce the
number of print statements. You are allowed to give a comma-
separated list of things to print.

Let's see these facilities in use:

ave2 - average 2 ages

input

print "please enter first age: ";

$age1 = <STDIN> ;

print "please enter second age: ";

get average

print "The average age is ",

$average = ($age1 + ($age2 = <STDIN>))

/ 2 , "\n";

following line not good - too confusing!

print "Ages ",$age1+0," and ",$age2;

but an excellent class discussion

Remember, comment it well. Better clear than concise!

graham@otter:profile/book> perl average

please enter first age: 43

please enter second age: 46

The average age is 44.5

graham@otter:profile/book>

Figure 15

Running Perl program "average"

graham@otter:profile/book> perl av2

please enter first age: 46

please enter second age: 43

The average age is 44.5

Ages 46 and 43

graham@otter:profile/book>

Figure 16

Running Perl program "ave2"

P103 Variables and Operations

Learning to Program in Perl 29

3.4 Summary

Reading from the user

• use file handle STDIN

• surround it by the read from operator parts <STDIN>

• assign what you read (using =)

• into a variable

Variables

• names start with $ character

• then a letter

• then letters, numbers, underscores

Variable names are case significant. Variables are created and
reused on the fly. Their length is adjusted automatically so they
can hold as much text as you like.1 When you enter a string, it
has a [return] on the end. Use the chop function if you need to
get rid of this.

When you perform an arithmetic calculation on a string, Perl
automatically ignores the [return] for the purpose of the calcu-
lation. Calculations may be performed using operators such as +
- * and /. You can alter the order in which they're performed by
using round brackets.

You can specify a whole list of things to be printed in a single
print operation, such as constants, contents of variables and
even expressions to be worked out within the line.

1 A "string"

Chapter 3 P103

30 Well House Consultants

Exercise

Write a program to ask the user his/her name, and then print out a personalised welcome message.

Our example answer is amulree

For Advanced Students
Write a program to ask for a temperature in fahrenheit, and print it out converted to centigrade.

To convert F -> C

Take away 32

Divide by 9

Multiply by 5

Test it. Comment it as well.

Our example answer is dunkeld

Sample

seal% amulree

Please enter your name Graham Ellis

This is to welcome Graham Ellis

seal%

Sample

seal% dunkeld

Please enter a temperature in degrees fahrenheit 212

212 degrees F converts to 100 degrees C

seal% dunkeld

Please enter a temperature in degrees fahrenheit 32

32 degrees F converts to 0 degrees C

seal% dunkeld

Please enter a temperature in degrees fahrenheit -40

-40 degrees F converts to -40 degrees C

seal% dunkeld

Please enter a temperature in degrees fahrenheit 100

100 degrees F converts to 37.7777777777778 degrees C

seal%

Learning to Program in Perl 31

4 Perl Fundamentals

4.1 First Perl program

When you're writing your program, you use an editor to enter
the program (the "source") and save the text into a plain ASCII text
file. Use any editor you like, provided it can write a plain text file.

The system you're using for this course will have a variety of
editors available depending on what platform you're using. You'll
have some of vi, emacs, pico, ex, edit, notepad, simpletext and
textedit available.

If you do have an editor you're familiar with, that's great. If not,
we have set up all the systems on this course so that you can type
the filename and a point-and-click style editor will appear. Once
you've entered your program, remember to save the file! Here's
our "first program"

#

Copyright Well House Consultants, 2003

"language" - showing some Perl language constructs

#

print ("Welcome to Perl Programming\n");

$temperature = 212; $factor = 5.0 / 9.0;

$becomes = ($temperature - 32) * $factor;

$units_1 = "Farenheight";

$units_2 = "Centigrade";

=head1 Documentation for "langauge"

"language" is a sample program that converts

a temperature in Farenheight into

Centrigrade

=cut

print $temperature," degrees ",$units_1, # from

 " becomes ",

 $becomes," degrees ",$units_2, # to

 "\n";

__END__

Since the Perl interpreter stops at the __END__

line, I can supply further comments and documentation

at that point, and it's efficient at run time.

Chapter 4 P202

32 Well House Consultants

You can run that as we did (right)
by typing in perl language.

Let’s look at the component parts.

4.2 Comments and documentation

Firstly, every program that you write should include documen-
tation. Are you going to remember what some obscure piece of
code did when you come back to it six months later, and are your
users going to be able to work out how to use your program from
reading it?

You'll want to include:

• comments for yourself and other programmers

• documentation for your users

Both comments and built-in documentation are ignored by the
Perl language interpreter itself, and you are encouraged to be
generous in using them.

Comments

Every programming language supports comments, and every
good programmer comments his code well. Although there are no
specific programs that make use of comments, when a maintain-
ance programmer comes back to the code at a later date his job
will be eased by their generous provision. It's said that the majority
of the cost of code is in the maintenance rather than the develop-
ment, and that only one in five pieces of code are maintained by
their original author throughout their useful life.

There are four ways that you might like to consider to comment
your programs:

1. If you start a line in Perl with a # character, that line will
be treated as a comment.

2. Under most circumstances, a # in the middle of a line also
signifies the start of a comment that runs to the end of a
line.

3. White space may be placed between any language
elements in Perl, and you can use as much or as little white
space as you like, thus setting out your code to be more
readable.

4. If you include a line that reads
__END__

in your file, then the Perl interpreter will stop parsing the file
at that point, which means that anything thereafter will be
treated as comments or documentation. Since documenta-
tion requires lines that start with a = character, it follows
that you can place more or less whatever you wish after
the __END__ and have it taken as a comment.

seal% perl language

Welcome to Perl Programming

212 degrees Fahrenheit becomes 100 degrees Centigrade

seal%

Figure 17

Running Perl program "language".

P202 Perl Fundamentals

Learning to Program in Perl 33

Documentation

Also known as "documenation comments" in some languages.
Your users will all want documentation but may have different

views as to what format they would like; some would like HTML,
others Postscript, and yet others plain text files. In Perl, all can be
provided from a single set of embedded documentation comments
written in a notation known as POD ("Plain Old Documentation").

A POD directive starts with the = character on column1,
followed by a keyword (such as head, over, back or for). There
may be other text on that directive line, then there's a number of
lines of text making up the body of the documentation, followed by
an =cut line.

In our first example program there was one POD block:

=head1 Documentation for "langauge"

"language" is a sample program that converts

a temperature in Farenheight into

Centrigrade

=cut

which calls up a major heading, and then provides a chunk of
description.

When run as a Perl program, POD blocks are ignored, but extra
programs are supplied with the Perl distribution which include
POD interpreters. Let's get plain text out of our program using
pod2text:

$ pod2text language

Documentation for "langauge"

 "language" is a sample program that converts

 temperature in Farenheight into Centrigrade.

$

Without comments and PODs, the Perl program will still work
but will be impractical to read:

print

("Welcome to Perl Programming\n");

$temperature=212;$factor=5.0/9.0;

$becomes=($temperature-32)*

$factor;$units_1=

"Fahrenheit";$units_2=

"Centigrade";print

$temperature,"degrees ",$units_1,

" becomes ",$becomes," degrees "

,$units_2,"\n";

Chapter 4 P202

34 Well House Consultants

 Executable statements

The active statements in our Perl
program (after we've discounted the
comments) are each ended with a ;
character, and each is executed in
turn.

It's the ; character which tells
the Perl language compiler1 where
one ends and the next starts. Rather
like a full stop (.) in English.

 It is not the end-of-line character
that separates statements as it does
in shell programming languages,
Fortran and some others. Leave the
; off and you'll probably get an error
reported!

Here are our executable statements in order:

print("Welcome to Perl Programming\n");

$temperature=212;

$factor=5.0/9.0;

$becomes=($temperature-32)*$factor;

$units_1="Fahrenheit";

$units_2="Centigrade";

print$temperature," degrees ",$units_1,

" becomes ",$becomes," degrees ",$units_2,"\n";

and it still runs the same!

language -

#

Copyright Well House Consultants, 2003

"language" - showing some Perl language constructs

#

print ("Welcome to Perl Programming\n");

$temperature = 212; $factor = 5.0 / 9.0;

$becomes = ($temperature - 32) * $factor;

$units_1 = "Farenheight";

$units_2 = "Centigrade";

=head1 Documentation for "langauge"

"language" is a sample program that converts

a temperature in Farenheight into

Centrigrade

=cut

print $temperature," degrees ",$units_1, # from

 " becomes ",

 $becomes," degrees ",$units_2, # to

 "\n";

__END__

Since the Perl interpreter stops at the __END__

line, I can supply further comments and documentation

at that point, and it's efficient at run time.

Figure 18

Running Perl program "language" -- comments have been
greyed.

1 more about the compiler later!

P202 Perl Fundamentals

Learning to Program in Perl 35

Print statement

To start, we'll print information out from our Perl program using
a print function. A print function comprises the word "print"
followed by a comma-separated list of things to be printed. And it
ends, of course, with the mandatory semicolon.

In our example, the output from our print statements came
to the screen, but Perl really sends output to something called
"Standard Out" or STDOUT. What happens to information sent to
STDOUT is controlled by the program which called up Perl -- at the
moment, your command-line interpreter. What are the alterna-
tives? Lots, including:

• The screen

• A file

• Another command

• A web visitor's browser

It's not Perl that controls this, nor the programmer. It's the user
and the environment in which he runs your Perl program!

Our comma-separated list can contain a variety of things to
print out and we'll introduce many more as we go through. In this
example, we used

• Constant (unchanging) text strings written in double quotes
(may include special codes like \n for a new line)

• Variable (changing) text strings

• Variable (changing) numbers

Variables and assignments

We need to be able to store information within our program and
to have it be in common with almost every other language, we use
the concept of a named variable. It's much easier to refer to some-
thing by name than by an obscure location number. Using a name
also means that our program's memory can be re-arranged and
we won't have to change the code!

 Perl allocates memory for variables dynamically. Let's look
again at the first two executable statements of our program:

print("Welcome to Perl Programming\n");

$temperature=212;

• While the first statement is being executed, the variable
$temperature does not exist. There is no memory
allocated for it and its name is not held in any "symbol table".

• The second statement is an assignment. As it's executed,
Perl works out the result of whatever is to the right of the =
sign and saves it into a variable named on the left.

When Perl comes to save the value 212, the variable
$temperature does not exist, and so Perl:

• Looks at the type and size of the information being assigned

• Allocates as much space as necessary

• Creates the name in its "symbol table" pointing to that space

In order for the Perl language to understand that part of a state-
ment is a reference to a variable, the variable name must conform
to certain rules:

Chapter 4 P202

36 Well House Consultants

• 1st character must be $

• 2nd character must be a letter -- upper or lower case

• Subsequent characters must be letters, digits or
underscores

• Variable names can be as short as $j, or as long as you
wish

• Variable names are case sensitive -- $well is not the same
as $Well

Notice differences here to other languages:
IN OTHER LANGUAGES, you often have to declare variables

before you use them.In Perl, you can just use them!
IN OTHER LANGUAGES, you often have to state what type of

information will be held in a variable. In Perl, you can just assign
the information!

IN OTHER LANGUAGES, you often have to tell the system how
much memory to allocate for each variable (especially with a char-
acter string), but in Perl the memory allocation is automatic.

IN OTHER LANGUAGES, you can start a variable name with a
letter (or you only have to state $ when you're using rather than
setting the variable). In Perl, you must always use the $ or it
means something else!

Because Perl has dynamic memory allocation, you'll discover
later that you can get rid of a variable and release the memory it
used by writing something like

 undef $temperature;
but you won't do that very often. It's pointless to release indi-

vidual variables unless you're concerned about memory use. And,
in any case, the memory will be released as the Perl program
exits!

P202 Perl Fundamentals

Learning to Program in Perl 37

 Calculations

The next statements in our first sample program are:
 $factor=5.0/9.0;

 $becomes=($temperature-32)*$factor;

In each case, Perl calculates the expression on the right, then
assigns the result to the variable named on the left.

The expression being calculated will be comprised of variables
(the current value of which will be used) and / or constants, which
will be linked together using a number of operators. Being Perl, of
course, there's a huge number of operators. Here are some, with
examples:

$g + $h add values of $g and $h

$g - $h subtract value of $h from value of $g

$g * $h multiply values of $g and $h

$g / $h divide value of $g from value of $h

$g % $h divide value of $g from value of $h -- result is the
remainder

$g ** $h raise value of $g to the power of value of $h

- $g value of $g, negated

+ $g value of $g

abs $g the absolute value of $g

atan2 $g,$harc tangent of value of $g divided by value of $h

cos $g the cosine of the value of $g (taken to be radians)

exp $g e (2.71828182845905) to the power of the value of $g

int $g the integer part of the value of $g

log $g the natural logarithm of the value of $g

rand $g a random number between 0 and the value of $g

sin $g the sine of the value of $g (taken to be radians)

sqrt $g the square root of the value of $g

In which order are these operations performed?
** first - from right to left, then
unary + and - then
* / and % left to right, then
+ and - left to right, then
functions right to left

which is the same as in other languages.
Also, as in other languages, you can use round brackets to

change the order of operations. Our second example calculation
did just that as we wanted the subtraction done before the multi-
plication. Many programmers always put brackets around values
to the right of functions for clarity; write sin($g) rather than sin
$g. We have done the same with the first print of our sample
program.

Chapter 4 P202

38 Well House Consultants

4.3 Summary

Type your Perl program into a plain text file, using any suitable
editor. A program consists of comments and executable state-
ments. Comments are:

• lines starting with # characters

• text after # if it's within a line

• blocks from =for to =cut

• white space

The assignment statement says "calculate what's on the right
of an = sign and save it in the variable named on the left". You can
choose any variable name provided that it starts with a $ and a
letter, and only contains letters, digits, and _ characters.

There are many operators available for calculation, including +
- * and / and the order in which they're performed, can be
changed using round brackets.

To print results, use the word print followed by a comma-
separated list of variables, constants and expressions.

Statements should always be separated by a semicolon.

Exercise

Write a program taking two amounts and adding them together, then converting them to a different currency.
The first lines of your program will be:

$price1 = 16.50;

$price2 = 9.99;

$exch = 0.6325;

The prices are in pounds, and $exch is the conversion rate1 from euros to pounds.

Calculate and print the total bill in euros.

Our example answer is to_euro

1 Due to the fact that the exchange rate between the pound and the euro changes more frequently than the Perl language, the conversion rate
used in this example may be inaccurate at the time the course is run.

Sample

$ perl to_euro

converting to Euros

Total is 41.8814229249012 euros

P202 Perl Fundamentals

Learning to Program in Perl 39

4.4 Reading data

Thus far, your program has always converted the same temper-
ature, so it has always printed the same results. You need to be
able to read data from the user at run time. That reading may be
from a file or from the keyboard or from any number of other
sources (including from another program running on the same or
a different machine).

File handles

You don't specify directly where you're going to read from.
Rather, you use a special type of variable called a "file handle"
from which you'll read.

When you come to read from a file later, you'll learn how to
associate a file handle with an actual file, but Perl already associ-
ates a file handle called STDIN (yes, written in capitals with no
dollar!) with your main input stream, as defined by the program
that called Perl. So it could be that STDIN reads from:

• The keyboard

• A file

• Another command

• A web visitor's browser

Read from operator

What are you going to do with the file handle? You're going to
read from it. There's a special operator to do that

 <...>
where ... is where you name the file handle. Thus:
 $temperature = <STDIN>;
is "read from STDIN, up to and including a new line character,

and save the result in $temperature."

Chapter 4 P202

40 Well House Consultants

Let's see the whole program:

read_write - read, calculate, print results

print ("Please enter a temperature (deg F): ");

$temperature = <STDIN>; $factor = 5.0 / 9.0;

$becomes = ($temperature - 32) * $factor;

$units_1 = "Fahrenheit";

$units_2 = "Centigrade";

print $temperature," degrees ",$units_1, # from

 " becomes ",

 $becomes," degrees ",$units_2, # to

 "\n";

Does that look good?
Not really; the converted figures are too accurate (we'll come

back to that later) and why is there a new line after the number you
entered?

Strings v numbers

The prompt asked for a temperature to be entered. You happen
to know that temperatures are numbers and so (it appears!) did
your user. But what was actually entered was a string of charac-
ters. So the variable $temperature contained

 2 - 1 - 2 - [return]
and that's exactly what was printed back out later!
What is 2-1-2-[return] minus 32?
"Silly question," you say. "Can't perform maths on a

[return]." And Perl knows this. If you perform arithmetic on a
string, Perl converts the string to a number as best as it can (and
it won't complain). It then performs the maths on that resulting
number. So:

 $becomes = ($temperature - 32) * $factor;
starts off with $temperature containing a string (and we

don't assign anything back to that variable, so it remains a string)
and ends with $becomes being defined and containing a
number.

seal% perl read_write

Please enter a temperature (deg F): 212

212

 degrees Fahrenheit becomes 100 degrees Centigrade

seal% perl read_write

Please enter a temperature (deg F): 98.4

98.4

 degrees Fahrenheit becomes 36.8888888888889 degrees Centigrade

seal%

Figure 19

Running Perl
program
"read_write".

P202 Perl Fundamentals

Learning to Program in Perl 41

No new line was printed after 100 on our output then.
$becomes contained a number.

 How would I print out the temperature without the [return]?
 I could do it by converting it into a number. They look very odd,

but any one of these would work:
as the temperature is read in:
 $temperature = <STDIN> + 0;

 $temperature = 1 * <STDIN>;

a little later:
 $temperature = $temperature / 1;

 $temperature = $temperature - 0;

or even in the print statement:
 print $temperature+0," de...

String operators

It's probably better to remove the [return] character than
manipulate the data as we did above. There are a lot of string func-
tions and operators that will work on strings just like + and cos
worked on numbers.

 If I write
 chop ($temperature);

the last character (whatever it is) is removed from the string
held in the variable $temperature, and the string without that
character is saved back into the same variable.

I can even write
 chop ($temperature = <STDIN>);
and that will do what I want. But if I write
 $temperature = chop (<STDIN>);
the variable will end up containing just the [return] char-

acter. chop alters two things -- the variable named as its
parameter (it removes the last character from that) AND a return
value. It passes back the character actually removed.

Therefore, I could not have corrected my program earlier on by
writing

 print chop($temperature)," de ...
chop always removes the last character from a string. If you

don't know whether you have a new-line character there to be
removed, use chomp1 instead. chomp only removes the last
character if it's a new-line character.

1 chomp is Perl 5 only

Chapter 4 P202

42 Well House Consultants

Here's the program corrected using best practice:

rw - read, calculate, print results (2)

print ("Please enter a temperature (deg F): ");

chop ($temperature = <STDIN>);

$factor = 5.0 / 9.0;

$becomes = ($temperature - 32) * $factor;

$units_1 = "Fahrenheit";

$units_2 = "Centigrade";

print $temperature," degrees ",$units_1, # from

 " becomes ",

 $becomes," degrees ",$units_2, # to

 "\n";

4.5 Summary

<....> is the "read from" operator.
To read from the keyboard, you read from STDIN, so

<STDIN>. When you read, you actually read a string including a
new-line character which you can remove using chop, chomp, or
an arithmetic operation.

Exercise

Modify the first three lines of the program you wrote earlier to ask for (and read in) the two prices and the exchange
rate. Ensure that the program reports back the exchange rate used.

Our example answer is to_euro2

seal% perl rw

Please enter a temperature (deg F): 212

212 degrees Fahrenheit becomes 100 degrees Centigrade

seal% perl rw

Please enter a temperature (deg F): -40

-40 degrees Fahrenheit becomes -40 degrees Centigrade

seal%

Figure 20

Running Perl program "rw".

$ perl to_euro2

Converting pounds to Euros

Please enter first amount: 16.99

Please enter second amount: 9.50

Please enter exchange rate for Euros to Pounds: .6325

Total is 41.8814229249012 at an exchange rate of .6325 pounds to 1 euro

$

Learning to Program in Perl 43

5 More about the Perl
Environment

5.1 Integrating your program with your computer

How have you been running your programs?
By typing in the word perl followed by the program name.

And that's been fine, but in time you'll get tired of having to type
perl .

And perhaps there will be other programs written in other
languages on your computer? Do you want to have to type in the
name of the language each time? No, you don't. Apart from the
hassle involved, your users aren't going to be able to remember
which program was in Perl, which was in C, which was a Korn shell
script, and so on.

Although the examples we've looked at so far have been
system-independent, this section is not. That's nothing to do with
Perl ... it's the effect of the individual operating system.

5.2 Unix and Linux systems

Let's take the example program from the last section and try
running it straight from the command line:

seal% rw

rw: Command not found

seal%

Even though we're currently in the directory that contains the file!

Executable path

Operating systems don't look everywhere for an executable
program when you type a name in, only in certain directories. And
very often that doesn't even include the current directory!

You could run the command using ./rw, which states explicitly
that it'll be in the current directory. Or you could alter your "path".

Depending on which particular command-line handler (shell
program) you're running, the command to alter the path will differ.
Here are some examples. If you're doubtful about which is correct
for you, or if you want to learn more about Unix or Linux (yes, we
do courses on both!), please ask your tutor.
Korn shell
 export PATH=$PATH:.

C shell and TC shell
 set path = ($path .)

Bourne shell and Bourne again shell (BASH)
 PATH=$PATH:.

 export PATH

Chapter 5 P203

44 Well House Consultants

These changes will only take effect in the current shell. If you
log out and log in again, the changes will be lost. And if you move
to another window, you'll probably have to set them there too.

To be made permanent, the changes can be edited into Unix or
Linux's "dot files":1

.cshrc C shell

.profile Bourne shell

.profile.ksh Korn shell

.tcshrc TC shell

.bashrc BASH
Let's see if that helped:

seal% set path = ($path .)

seal% rw

rw: Permission denied

seal%

We appear to have fixed one problem, just to encounter
another.

File Permissions

You can read and write the file "rw", but you don't have permis-
sion to execute it. You may find it frustrating but it's to avoid you
and your users just typing in a file name and trying to run data.
After all, you'll probably have a lot more data files than programs!

Let's set the execute "bit" for the file owner:
seal% ls -l rw

-rw-r--r-- 1 graham wellho 414 Jan 18 17:30 rw

seal% chmod u+x rw

seal% ls -l rw

-rwxr--r-- 1 graham wellho 414 Jan 18 17:30 rw

seal%

Alternative commands:
chmod u+x rw set program executable for owner only
chmod ug+x rw set program executable for owner and group
chmod a+x rw set program executable for everyone
chmod 755 rw bad practice, but yes, it works!

and we should now be able to run the program:
 seal% rw
Badly placed ()'s

seal%

Not our day, is it?

Telling the calling shell this is Perl

If we don't type in the word perl before the program name,
how is the calling shell going to know to run the file using that
language? It won't!

 All shells look at the very first line of the text file they're going
to execute and use that line to work out the language.

• If the first line does not start with a #, the file's a bourne
script.

1 Locators may vary depending on system configurations.

P203 More about the Perl Environment

Learning to Program in Perl 45

• If the line starts with #!, the rest of the line is taken as the
command to run (with a full path).

• If the line starts with a # but there's no !, the C shell is
used.

So our example used the C shell and that strange message was
the result of the C shell trying to understand the Perl language.

In order to fix the problem, we need to change the first line of
the file.
 #!/usr/local/bin/perl

is the most common setting and we can then run the program
directly:

seal% rw

Please enter a temperature (deg F): 176

176 degrees Fahrenheit becomes 80 degrees

Centigrade

seal%

Do be aware that although /usr/local/bin/perl is the
most common place to find Perl, it may be elsewhere instead.
Other first lines that we have seen include:
 #!/bin/perl

 #!/usr/bin/perl

 #!/usr/local/bin/perl5.003

and this may even have to be changed between two computers of
the same manufacture and running the same operating system!

The good news is that most web servers also understand this
line and it works for your server-side scripting too. All you have to
do is get your ISP to tell you where he's placed Perl!

It's also good news that you can continue to run your Perl
program by typing
 perl rw

After all, that strange first line starts with a # character, so is
taken by Perl as a comment.

5.3 Windows 98, 2000 and Windows NT systems

Associating your file with Perl

In order for Windows to recognise the file as a Perl program,
you must use a file name ending in ".pl".

This association of the .pl extension with the Perl language
should have been automatically made at the time that Perl was
installed on the computer, but if you do need to change or edit the
setting, select down menus as follows:

• My Computer

• View

• Folder Options

• File Types

• Perl [Or if not there, "new"]

Chapter 5 P203

46 Well House Consultants

Here is what you see:

If you double click on Perl, another menu appears.

If you double click on open, further changes can be made.

There is no harm in having a #!/usr/local/bin/perl line
in your Perl program, but it will be ignored.

Running your program

Once you have associated your file with Perl using the exten-
sion, any menus that windows offers you will include the icon
selected for the Perl program, but won't mention the extension.

Clicking on an icon to run a Perl program will bring up a fresh
window and run the program with input and output in that window

When the Perl program finishes running, the window closes
automatically.

Figure 21

Setting file types on the Windows platform.

P203 More about the Perl Environment

Learning to Program in Perl 47

If you're looking to display final results for the user to read upon
completion of your Perl program, this habit of the window disap-
pearing is frustrating to say the least, and as a short term fix (we'll
see better later!) you might like to add the following to the end of
your Perl program:
 <STDIN>;

Literally, "read a line from the keyboard ... and throw away
what's been typed in!"

5.4 MS-DOS users

You can also run Perl programs in a DOS window. When you
installed Perl, the path was probably set in your \autoexec.bat
file but you may have declined to have that change made. You can
set the path manually:

 SET PATH=%PATH%;C:\PERL\BIN
or whatever. This will allow you to run a program simply by typing
 perl hello.pl

but it is not possible under MS-DOS to have the operating system
itself work out that it needs to use Perl to translate and run the file.

Your program will run under MS-DOS using the current window
as STDIN and STDOUT, and upon completion the DOS prompt will
re-appear. There is no need for the extra

 <STDIN>;
Note that the MS-DOS prompt starts with a new line, so a Perl

program that runs correctly on a Unix system will leave a blank line
prior to the prompt on MS-DOS.

5.5 Macintosh

As you might expect, running MacPerl is made easy for the
user. Not much more than just knowing Perl will have you using
this application "straight out of the box". SimpleText is used in
harmony with MacPerl; therefore, all the plusses that you’ve
grown to count on are all still there ... the ability to change font and
style for ease and readability (without it affecting the final result,
keeping it just as cross-platform). Try running a Perl program in
speech mode for a laugh (we used "Victoria").

After you’ve double-clicked on the application icon, open up
your program (or write a new one and save it) and then run it. With
available options, you are able to debug it, ask for compiler warn-
ings and perform other checks.

5.6 The compiler and the interpreter

Historically, there have been two ways that computers have
interpreted and run programs.

Compiled languages

In languages such as C and Fortran, the source code is inter-
preted by a program called a "compiler" which reduces the
English-like language written by the programmer to machine low-
level instructions. Such low-level instructions are conventionally
saved in files called "object files".

Figure 22

Running MacPerl on the Macintosh.

Chapter 5 P203

48 Well House Consultants

Programs in compiled languages are often long and call for
many standard facilities shared between different applications.
Therefore, after a whole lot of object files have been gathered,
they're linked together using another program called a "loader" to
form a single executable program.

Such compiled programs should be very fast to run, but they’re
expensive and slow to write. The executable file is dependent on
the type of machine it is on, and there's quite a long procedure to
follow if you want to make a change.

Interpreted languages

Basic, batch files, shell scripts and the like are often interpreted
as they are run.

The concept is much easier and making alterations is much
quicker (since all you do is change the source code and run
again), but execution can be s-l-o-w. You now have a program
that has to interpret a statement 100 times if it's in a loop that's run
100 times.

The middle way -- Perl

The best of both worlds -- used by Perl (Java, UCSD's Pascal
and a number of other languages use similar basic technology).

The Perl code is written into a source file and a COMPILER is
run to interpret each statement just once. But the output is not an
object file as in a compiled language; instead, it's what's called
"byte code" which can be efficiently run by ...

A souped-up INTERPRETER. The Perl interpreter takes the
byte code output by the compiler and runs it.

With Perl, both compiler and interpreter phases are run every
time your user runs the program. Up to and including Perl 5.004,
there was no practical way for the ordinary program to use one
independently of the other.

Whilst this system isn't as fast as a truly compiled language, it
is much faster to run than an interpreted language. Furthermore,
it's portable and simple to alter the programs.

5.7 Some questions on compilers and interpreters

Can I run just the compiler to check if I've got the syntax
(language) of my program correct?

Yes, you can run your program using the -c option to Perl:
seal% perl -c rw

rw syntax OK

seal%

What if I make a mistake in my program?

Very often, you'll get an error from the compiler. It will print out
an error message and won't let you go on to the interpreted stage
at all.

Look carefully at the error message and try to work out the
problem. During this course, call the tutor if you need help. Here
are some things to look for:

P203 More about the Perl Environment

Learning to Program in Perl 49

• Have you omitted a ; or a comma or a " character?

• Have you got a comma or a " in the wrong order?

• Have you opened but not closed a bracket?

• Have you used a capital letter by mistake? Print in not print!

Still none the wiser? Or perhaps your program runs, but gives
totally unexpected results?

Run your program using the -w (warnings) option. If Perl feels
that something, whilst it's valid, is a bit silly, it will print out a
warning message. You can get warning messages from both the
compiler and from the interpreter. You might not yet understand
every word they display but you'll be prodded in the right direction!

Let's put an error into our "rw" program:

rw2 - read, calculate, print results (2)

print ("Please enter a temperature (deg F): "

);

chop ($temperature = <STDIN>);

$factor = 5.0 / 9.0;

$becomes = ($temperature - 32) * $factor;

$units_1 = "Fahrenheit";

$units_2 = "Centigrade";

print $temperature " degrees ",$units_1, # from

 " becomes ",

 $becomes," degrees ",$units_2, # to

 "\n";

The error is tiny, but when we run the program it's clearly not
good!

Perhaps -w will help ...

Ah! line 16 ... $temperature has the value "212" ... can
you spot the error now? [We haven't made it easy]

5.8 Debugging tools

If you're still trying to track down your error -- you have a
program that compiles correctly, but doesn't work -- Perl is
supplied with a "debugger" that lets you step through the code,
examine individual variables, and the rest.

Sometimes, the debugger is overkill and a few extra print
statements placed in your code will perform miracles!

And -- a halfway house -- the structure of Perl allows you your-
self to see what variable names you have defined at any point, and
what values they contain. Is this starting to sound a bit compli-
cated? It needn't, for one of the other great aspects of Perl is that

seal% perl rw2

Please enter a temperature (deg F): 212

seal%

seal% perl -w rw2

Please enter a temperature (deg F): 212

Filehandle main::212 never opened at

rw2 line 16, <STDIN> chunk 1.

seal%

Figure 23

Perl program "rw2" above doesn’t run properly. Can you
find the error? One way to get a "tip" on what’s wrong is
to run the program with the -w option, as we’ve done
below.

Chapter 5 P203

50 Well House Consultants

there are lots of others out there who are more knowledgable than
you or I, and they've probably written the complicated bits and
made them publicly available.

To conclude this section, we've modified our "rw" program (now
called "rw3") to include a reference to a piece of code obtained
from elsewhere:

rw3 - read, calculate, print results

(2)

use symbols;

print

("Please enter a temperature (deg F): ");

chop ($temperature = <STDIN>);

symbols("after read");

$factor = 5.0 / 9.0;

$becomes = ($temperature - 32) * $factor;

$units_1 = "Fahrenheit";

$units_2 = "Centigrade";

print $temperature," degrees ",$units_1, # from

 " becomes ",

 $becomes," degrees ",$units_2, # to

 "\n";

symbols("at end");

All we've done is to add that require statement to pull in
another file of Perl, and these two statements:
 symbols("after read");

 symbols("at end");

which call code in that file to analyse and list out your variables.
Although examples up to this point (and on the earlier Perl

Basics course) were run by typing perl followed by the program
name, all examples for the rest of this course will have the "magic"
first line set and will be marked as executable.

seal% perl rw3

Please enter a temperature (deg F): 212

Symbol list after read:

 temperature 212

212 degrees Fahrenheit becomes 100 degrees

Centigrade

Symbol list at end:

 becomes 100

 factor 0.555555555555556

 temperature 212

 units_1 Fahrenheit

 units_2 Centigrade

Figure 24

Running Perl program "rw3". We‘re not getting the error
messages now.

P203 More about the Perl Environment

Learning to Program in Perl 51

5.9 Summary

On Unix and Linux systems, to make your program executable
from the command line, you must:

• include the directory it's in on your path

 (set path or similar; make permanent in dot file)

• set the file to be executable

(chmod +x or similar)

• tell the calling shell that this is a Perl file

 (first line #!/usr/local/bin/perl or similar)
On Windows systems, the Perl program should be automati-

cally associated with files ending in .pl; simply name your Perl
programs using that convention and they'll click and run. You may
need to extend your program to give the user the opportunity to
read the output, though!

If you make an error in your program, Perl may give an error
message; if it does, correct the error and try again.

More insidious errors can also occur. Programs can execute
but do the wrong thing. You must check carefully. If you can't spot
what's wrong with a program, using -w on the command line, or
adding in extra print statements, may help.

Chapter 5 P203

52 Well House Consultants

Exercise

Take your exercises from the previous chapter and set them up so that they can execute directly and well.
Check they still work directly in a new window, and when you log out and back in again.

Our example answer is to_euro3

We provide a sample program called "two" which doesn't work correctly.
Can you make it function as shown in the samples?

Our example answer is two

Sample

graham@otter:~/profile/answers_pp>

to_euro3

Please enter first price = 19.50

and second price = 9.20

and exchange rate = 0.7

converting to Euros

Total is 41 euros

At a rate of 0.7 euros to 1 pound

graham@otter:~/profile/answers_pp>

Sample

graham@otter:~/profile/answers_pp> two

please enter your name: Graham

please enter your date of birth: 16/07/54

your name is Graham

16/07/54 is your date of birth

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 53

6 Conditionals and Loops

Like any other language, Perl has conditionals and loops.

6.1 The "if" statement

The first conditional we'll look at is the if statement. There are
two in the following example:

#!/usr/local/bin/perl

condition - if statements

print "Enter a number = ";

$number = <STDIN>;

if ($number > 10) {

 print "That number is over 10\n";

 print "Big!\n";

 }

if ($number%5 == 0) {

 print "it's a multiple of 5\n";

 } else {

 print "it's not a multiple of 5\n";

 }

print "program completed\n";

Structure

An if statement comprises:

• The word if

• a condition (in brackets)

• a block of code (in braces)

In operation, the statement performs the instructions in the
block of code if (and only if) the condition is true.

Whether or not the block of code is performed, Perl continues
executing the program immediately beyond the block once the
actions of the if statement have been completed.

Optionally, the if statement may be followed further by:

• the word else

• another block of code (also in braces).

Where this extra code is present, the block after the else will
be executed if (and only if) the condition is false.

The if statement now runs either the first block or the second
block before continuing on to the following Perl code. It never runs
both, and it never runs neither!

{two

if

statements

within

one program{
seal% condition

Enter a number = 4

it's not a multiple of 5

program completed

seal% condition

Enter a number = 15

That number is over 10

Big!

it's a multiple of 5

program completed

seal%

Figure 25

Running Perl program "condition".

Chapter 6 P204

54 Well House Consultants

Conditions

Perl has a "do I / don't I?" decision to make at the if statement
based on whether the condition in the brackets gives a result
which is true or false.

A number of operators are provided to help you; the ones I'll
introduce first return:

• null (""), for false

(the value 0 is also considered to be false)

• 1 for true

(any value which is not zero or "" is considered to be true)

and the operators are:
> greater than (e.g. $g > $h)
== numerically equal (e.g. $g == $h)
>= greater than or equal
!= not equal
< less than
<= less than or equal

Blocks

How does Perl know how many statements are conditional
upon the if statement? Perhaps you want just one statement to
be conditional, or perhaps the whole of the rest of your program.

You tell Perl how many statements to make conditional by indi-
cating the "scope" of the condition using curly braces, rather like
wrapping in a sheet of paper the statements that are conditional.

There are many other times in Perl that you'll want to hold a
whole group of statements together in this way; it's referred to as
a "block" and you'll always use { and } to surround it.

The blocks in our first example are quite simple, but in more
complex use, they can contain almost any code you wish,
including another block. This is known as "nesting blocks". When
you nest blocks of code, you must ensure that each inner block is
contained entirely within its outer block, and that you have the
same number of beginning and end curly braces.1

There are many other ways of writing conditional statements in
Perl, but with this particular use of the if statement, you must
always put your conditional code into a block. Unlike other
languages, you may not leave out the { and } characters if the
block is to consist of just one statement.

6.2 The "while" statement

The if statement allowed us for the first time to select code
to execute conditionally, but not to keep repeating the code.

The while statement allows us to define a block which is
going to be executed a number of times (or perhaps not executed
at all).

 The syntax is similar to the if statement:

1 The vi editor has a convenient feature for double-checking your program. The
% command jumps your cursor from one bracket or brace to its pair -- useful if
you're trying to sort out your nesting.

P204 Conditionals and Loops

Learning to Program in Perl 55

• The word while

• a condition (in brackets)1

• a block of code (in braces)2

In operation, the statement performs the instructions in the
block of code while the condition remains true.

1.The condition is checked
 2.If the condition was true

a) the block is performed
b) then Perl jumps back to step 1

3.If the condition is false, the loop is completed
In order to prevent the loop running on forever, one of the

actions within the block (2a in the above list) should be crafted to
change the condition to false when you no longer wish to cycle.

Whether or not the block of code is performed, Perl continues
executing the program immediately beyond the block once the
actions of the while loop have been completed.

#!/usr/local/bin/perl

looper - while loop

print "Enter a number = ";

chop ($number = <STDIN>);

$now = 1;

while ($now <= 12) {

 print $now," times ",$number,

 " is ",$now*$number,"\n";

 $now = $now + 1;

 }

print "program completed\n";

1 brackets ()
2 braces { }

perform

re-verify

program continues

Figure 26

Illustrating how a while loop works.

1

condition

2
true?

3
false?

a
BLOCK

b

seal% looper

Enter a number = 5

1 times 5 is 5

2 times 5 is 10

3 times 5 is 15

4 times 5 is 20

5 times 5 is 25

6 times 5 is 30

7 times 5 is 35

8 times 5 is 40

9 times 5 is 45

10 times 5 is 50

11 times 5 is 55

12 times 5 is 60

program completed

seal%

Figure 27

Running Perl program "looper".

Chapter 6 P204

56 Well House Consultants

6.3 Shorthand operators

Here's a program that calculates course dinner requirements:

#!/usr/local/bin/perl

dinners - count course meals!

print "Course name: ";

chop ($course = <STDIN>) ;

while ($course) {

$error = 0;

$dinners = 0;

print "Days= ";

chop ($daze = <STDIN>);

if ($daze < 1) {

print "Too short\n";

$error = 1;

}

if ($daze > 5) {

print "Too long\n";

$error = 1;

}

if ($error) {

print

"Must specify between 1 and 5 days\n";

} else {

$day = 1;

while ($day <= $daze) {

print "Students for day ",$day,"= ";

chop ($dc = <STDIN>) ;

$dinners = $dinners + $dc + 1;

adds tutor

$day = $day + 1;

}

print "dinners in ",$day-1,

" days was ",$dinners,"\n";

print "That's an average of ",

$dinners/$daze," per day\n";

$cc = $cc + 1;

}

$alldinners = $alldinners + $dinners;

print "name of next course: ";

chop ($course = <STDIN>);

}

print "Grand total of ",$alldinners," dinners\n";

print "Spread over ",$cc," courses\n";

It illustrates the if and while that we just studied, and it
works well. But some parts of the code can be improved.

seal% dinners

Course name: Perl Basics

Days= 1

Students for day 1= 4

dinners in 1 days was 5

That's an average of 5 per day

name of next course: Perl Programming

Days= 4

Students for day 1= 6

Students for day 2= 6

Students for day 3= 6

Students for day 4= 7

dinners in 4 days was 29

That's an average of 7.25 per day

name of next course:

Grand total of 34 dinners

Spread over 2 courses

seal%

Figure 28

Running Perl program "dinners".

P204 Conditionals and Loops

Learning to Program in Perl 57

Add and assign

It's very common to write statements such as
$alldinners = $alldinners + $d...

In Perl we can shorten it to
 $alldinners += $d...

(other operators are available: -= *= /= %= **= and so on)

Increment

It`s also very common to write
 $cc = $cc + 1;

but that can become as short as
 $cc++;

or
 ++$cc;

(we'll see the difference in just a minute)

Multiple assign

There might be times we wish to save the same value or
expression in several variables. Instead of
 $error = 0;

 $dinners = 0;

we can write
 $error = $dinners = 0;

String expansion

We can start using some clever features of strings, too. Instead
of:
 print "Students for day ",$day,"= ";

we can write simply
 print "Students for day $day= ";

Assignments within other statements

We can even embed some assignments within others
 while ($day <= $daze) {

(and later)
 $day = $day + 1;

becomes
 while (++$day <= $daze) {

Chapter 6 P204

58 Well House Consultants

Let's use of all those in our "dinners" program:

#!/usr/local/bin/perl

din - count course meals!

print "Course name: ";

chop ($course = <STDIN>) ;

while ($course) {

$error = $dinners = 0;

print "Days= ";

chop ($daze = <STDIN>);

if ($daze < 1) {

print "Too short\n";

$error++;

}

if ($daze > 5) {

print "Too long\n";

$error++;

}

if ($error) {

print "Must specify between 1 and 5 days\n";

} else {

$day = 0;

while (++$day <= $daze) {

print "Students for day $day= ";

$dinners += <STDIN> + 1;

}

print "dinners in ",$day-1,

" days was $dinners\n";

print "That's an average of ",$dinners/

$daze," per day\n";

$cc++;

}

$alldinners += $dinners;

print "name of next course: ";

chop ($course = <STDIN>);

}

print "Grand total of ", $alldinners," dinners\n";

print "Spread over ",$cc," courses\n";

We've made eight code-reducing changes (can you spot
them?), but operationally, it's identical.

More on the increment operator

What's the difference between $c++ and ++$c ?
Nothing ... if that's the whole statement.
But look at these two:
 $g = $h++;

 and
 $g = ++$h;

seal% din

Course name: Perl Basics

Days= 1

Students for day 1= 4

dinners in 1 days was 5

That's an average of 5 per day

name of next course: Perl Programming

Days= 4

Students for day 1= 6

Students for day 2= 6

Students for day 3= 6

Students for day 4= 7

dinners in 4 days was 29

That's an average of 7.25 per day

name of next course:

Grand total of 34 dinners

Spread over 2 courses

seal%

Figure 29

Running Perl program "din", exactly the same results as
"dinner".

P204 Conditionals and Loops

Learning to Program in Perl 59

That roughly translates to:
"If the ++ appears after a variable name, then the vari-
able is incremented after it's been used for any other
purpose in the context in which it has appeared".

So:$g = $h++;
take $h
save [the original value] into $g
THEN increment

$g = ++$h;

take $h
increment it
THEN save [the new value] into $g

There is also a -- operator that can also be specified before
or after the variable to which applies.

6.4 Ways of writing numbers

You've seen constant numbers written as 32 and 32.0 ... how
else can I write them?

#!/usr/local/bin/perl

numbers - how to write constants

$a = 32; $b = 0x32;

$c = 032; $d = 3.2e1;

$e = 32.0; $f = "32";

$g = "32.0";

print 2*$a,"\n"; print 2*$b,"\n";

print 2*$c,"\n"; print 2*$d,"\n";

print 2*$e,"\n"; print 2*$f,"\n";

print 2*$g,"\n";

Some surprises ...
032 means 32 octal (base 8) = 3 x 8 + 2 = 26
0x32 means 32 hexadecimal (base 16) = 3 x 16 + 2 = 50

6.5 Summary

An if statement can be used to check a condition, and
perform a block of statements1 if the condition is true.

Optionally, an else block can be supplied as an alternative to
be performed if the condition is false.

A while statement can be used to keep repeating a block of
code while a condition remains true.

In Perl, 0 and "" are false and all other values are true. Opera-
tors such as == and < allow you to compare numbers and return
you true or false answers.

Perl provides many short forms; you can write:
$a += 4 instead of $a = $a + 4
$a++ instead of $a = $a + 1
$a = $b = 0 instead of $a=0; $b=0;

andprint "$a\n"instead of print $a,"\n"
Be careful with ++; you can write it before or after the variable

name and that tells Perl whether to increment before or after it's
used for any other operation in the same context.

seal% numbers

64

100

52

64

64

64

64

seal%

Figure 30

Running Perl program "numbers".

1 surrounded by { }

Chapter 6 P204

60 Well House Consultants

Exercise

Write a program to read in and sum a series of prices. When the user enters a zero, print out the total and number
of items, and leave the program.

Our example answer is summer

Sample

graham@otter:~/profile/answers_pp> summer

Enter first value 12.50

next value: 3.50

next value: 4.89

next value: 0

3 items, totalling 20.89

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 61

7 Analysing a
Programming Task

7.1 A small job

How do we convert a small job that needs to be done into a Perl
program?

We need to:
• learn about the task to be done is some detail
• work out how we're going to achieve the task
• write and test the program

Learning about the job

Although we're talking about "jobs" and "tasks" we're really
writing something to take incoming data, handle and manipulate
that incoming data and generate results – more data. So the first
thing to learn about is the data, input and output.

Let's take an example: We want to write a program to help
people understand sound levels in decibels. If they enter a number
of decibels, to tell them what it compares to.

This is a typical woolly specification that you might be given,
and you need to work it out much more precisely, probably by
questioning the originator of the specification.

We'll come up with:
• User Input
• A single number, in decibels
• Output to user
• A line of information that says: "xxxx decibels is a bit noisier

than yyyyyyyyyyyyyyyyyyyyyyyy"
But there's also other data involved here. What else would you

need to know if you were doing this task by hand? You would need
a whole list of decibel values and what they equate to. You'll need
to question the specification author as to where this data is coming
from, and then make a decision as to whether it should form
another input (from a file, or even from a web service).

There are other things you need to learn about the job you're
doing. In particular just how the inputs get converted into outputs.

Working it out

Once you feel that you understand the job you'll be doing –
inputs, outputs and how outputs are worked out from inputs – you
may be well advised to draw a flowchart. Although there are a
number of schemes for formally flowcharting tasks, you may
prefer just to sketch it out on a sheet of paper.

Chapter 7 module Q904

62 Well House Consultants

A first flowchart might be as simple as seen in Figure 31:
If that doesn't show you how to convert the job into a program,

then you may take one or more of the boxes on your flowchart and
expand that box into another flowchart. (see Figure 32)

Writing

You can go on splitting up flowchart boxes into smaller boxes
as you wish, but eventually you'll get to the stage that you can see
how each box or group of boxes can be translated into Perl.
Some practice is required at this; you'll probably want to bear in
mind:

a) That an arrow going back up is probably going to be
represented in the code by a loop, and other arrows going
back up within it will be redo or next statements.

b) Decision boxes (shown as diamonds on traditional
flowcharts) will often be if statements or similar, though
they may also translate as the loop condition.

c) Instructional boxes such as "get value from data" will involve
using some variables to generate other variables –
conditionals and loops will not be involved if you've broken
down your flowchart far enough.

Here's an example application, taking our flowcharts and
converting them into Perl:

#!/usr/bin/perl

Program to report on decibels - noise_1

Ask user to enter a value in decibels

#==

print "Please enter a value in decibels: ";

chop ($yousaid = <STDIN>);

get next value down from the data

#==================================

while data is available ... read it

while ($preset = <DATA>) {

extract value and text

($val,$text) = split(/\s+/,$preset,2);

is it larger than the user's value?

next if ($val > $yousaid);

have we already got a higher value?

next if ($val < $best_so_far);

save as best!

$best_so_far = $val;

$best_text = $text;

Figure 31

A simple flowchart

get value from user

get next value down from data

print results

Figure 32

Expanding the simple flowchart

get next value down from data

(Another)
Data Value
available

Is it larger
than the user’s

value?

Have we
already got a larger

value?

get value from data

save as best so far

becomes

no

yes

yes

yes

module Q904 Analysing a Programming Task

Learning to Program in Perl 63

end of loop

}

print out results

#==================

print "$yousaid decibels is a bit noisier than $best_text";

__END__

5 the threshold of hearing

15 a Broadcasting Studio

25 a Bedroom at Night

35 a Library

45 a Family Living Room

55 a Typical Office

65 Conversational Speech

75 Average Roadside Traffic

85 Inside a Bus

95 Inside a Tube Train

105 a Pop Group at 20 metres

115 a Loud Car Horn at 1 metre

125 a Pneumatic Drill

135 the threshold of Pain

We've commented (and underlined the comment) each of the
boxes on our original flow chart (Figure 31). We've also
commented each of the lines in the middle section (the more
detailed flow chart of Figure 32) to show you our translation
process.

For a real-life application, it's highly unlikely that we would add
so many comments, as the skilled programmer is able to read the
detail of well written code line-by-line. Comments would remain for
each of the major blocks, however, as would comments that
describe any specially "clever" (i.e. obscure) bits of code.

The program runs as follows:

[graham@otter pex]$./noise_1

Please enter a value in decibels: 20

20 decibels is a bit noisier than a Broadcasting

Studio

[graham@otter pex]$./noise_1

Please enter a value in decibels: 77

77 decibels is a bit noisier than Average Roadside

Traffic

[graham@otter pex]$

Testing

Try to write your program section-by-section, and test each of
the sections as you do so to see how you're getting on. Perl does

Chapter 7 module Q904

64 Well House Consultants

have a debugger that lets you step through the code, but you'll
often find that a print statement is just as fast and useful.

It's vital to test thoroughly. Put in some data from which the
results will be known, and check that you get the right results. If
your code includes loops and conditionals, you'll want to run a
number of tests in such a way that each loop and each particular
condition is tried out in all its various configurations.

Error Handling

In practice, our testing above was not thorough; we made the
poor assumption that the user knew enough about decibels to put
in a sensible answer. But look at this:

[graham@otter pex]$./noise_1

Please enter a value in decibels: 2

2 decibels is a bit noisier than [graham@otter pex]$

[graham@otter pex]$./noise_1

Please enter a value in decibels: Forty

Forty decibels is a bit noisier than [graham@otter pex]$

[graham@otter pex]$./noise_1

Please enter a value in decibels: 23456

23456 decibels is a bit noisier than the threshold of Pain

[graham@otter pex]$

None of these is a correct answer. Let's look at each:

Please enter a value in decibels: 2

2 decibels is a bit noisier than [graham@otter pex]$

In this case, the number entered was less than the quietest
(smallest) value in our preset examples. No match was found, and
an unsuitable output was printed.

Please enter a value in decibels: Forty

Forty decibels is a bit noisier than [graham@otter pex]$

A number wasn't entered at all – just text. The Perl program
assumed that the letters (as they didn't contain digits) meant zero,
and we got the same type of error as the first example.

Please enter a value in decibels: 23456

23456 decibels is a bit noisier than the threshold of Pain

[graham@otter pex]$

Perhaps this doesn't look like an error, but it is. The threshold
of pain is around 135 decibels, so to say that 23456 decibels is "a
bit nosier" is crazy.

You'll need to add error handling to your code. Sometimes a lot
of error handling. You can tackle error handling on the basis of

module Q904 Analysing a Programming Task

Learning to Program in Perl 65

looking for all possible errors, or taking the opposite approach and
checking that the inputs were valid. The latter is perhaps the best
and most secure approach in Perl, although it's the less common
approach in many more traditional programming languages.

Let's check our input value, with examples using both schemes:

#!/usr/bin/perl

Program to report on decibels - noise_2

Ask user to enter a value in decibels

#==

print "Please enter a value in decibels: ";

chop ($yousaid = <STDIN>);

if ($yousaid =~ /\D/)

{

die ("Only digits allowed\n");

}

if ($yousaid < 5) {

die ("Must specify a number 5 or greater\n");

}

if ($yousaid > 150) {

die ("Must specify a number 150 or less\n");

}

get next value down from the data

#==================================

(Rest of application unchanged)

Here's the outputs from testing. Note how we started off by
testing that the program still works for valid inputs, and then we
tried out each of the error conditions in turn.

[graham@otter pex]$./noise_2

Please enter a value in decibels: 73

73 decibels is a bit noisier than Conversational

Speech

[graham@otter pex]$./noise_2

Please enter a value in decibels: forty

Only digits allowed

[graham@otter pex]$./noise_2

Please enter a value in decibels: 2

Must specify a number 5 or greater

[graham@otter pex]$./noise_2

Please enter a value in decibels: 200

Must specify a number 150 or less

[graham@otter pex]$

Chapter 7 module Q904

66 Well House Consultants

Using regular expressions to accept only valid format input, the
could could have read:

#!/usr/bin/perl

Program to report on decibels - noise_3

Ask user to enter a value in decibels

#==

print "Please enter a value in decibels: ";

chop ($yousaid = <STDIN>);

if ($yousaid !~ /^([01]?\d{2}|[5-9])$/) {

die ("Must specify number in range 5 to 199\n");

}

get next value down from the data

#==================================

and when tested:

[graham@otter pex]$./noise_3

Please enter a value in decibels: 4

Must specify number in range 5 to 199

[graham@otter pex]$./noise_3

Please enter a value in decibels: 8

8 decibels is a bit noisier than the threshold of hearing

[graham@otter pex]$./noise_3

Please enter a value in decibels: 27

27 decibels is a bit noisier than a Bedroom at Night

[graham@otter pex]$./noise_3

Please enter a value in decibels: 101

101 decibels is a bit noisier than Inside a Tube Train

[graham@otter pex]$./noise_3

Please enter a value in decibels: 161

161 decibels is a bit noisier than the threshold of Pain

[graham@otter pex]$./noise_3

Please enter a value in decibels: 202

Must specify number in range 5 to 199

[graham@otter pex]$./noise_3

Please enter a value in decibels: fifty

Must specify number in range 5 to 199

[graham@otter pex]$

You'll notice that we've extended our testing here since the
regular expression match itself has many possibilities, conditions
and loops, and we need to ensure that it will do what we require in
all circumstances.

module Q904 Analysing a Programming Task

Learning to Program in Perl 67

Exercise

7.2 As a job gets larger

Our decibel example was a small application, but as applica-
tions grow there can be many levels of flowcharting involved, and
the overall results would be a huge block of code, with the various
sections separated by nothing more substantial than a comment.

A better approach is often to mimic the technique we used in
the flowcharting using Perl subroutines,1 a subroutine call and,
within that subroutine, we define the detail.

Thus our initial flowchart can be coded as:

#!/usr/bin/perl

Program to report on decibels - noise_4

get_user_value();

get_near_match();

print_results();

###

sub get_user_value {

Ask user to enter a value in decibels

print "Please enter a value in decibels: ";

chop ($yousaid = <STDIN>);

if ($yousaid !~ /^([01]?\d{2}|[5-9])$/) {

die ("Must specify number in range 5 to 199\n");

 }

}

###

sub get_near_match {

get next value down from the data

while data is available ... read it

while ($preset = <DATA>) {

extract value and text

($val,$text) = split(/\s+/,$preset,2);

is it larger than the user's value?

next if ($val > $yousaid);

have we already got a higher value?

next if ($val < $best_so_far);

save as best!

1 a box that performs a quite complex task is reduced to a single Perl statement

Chapter 7 module Q904

68 Well House Consultants

$best_so_far = $val;

$best_text = $text;

end of loop

}

}

###

sub print_results {

print out results

print "$yousaid decibels is a bit noisier than $best_text";

}

__END__

5 the threshold of hearing

15 a Broadcasting Studio

25 a Bedroom at Night

35 a Library

45 a Family Living Room

55 a Typical Office

65 Conversational Speech

75 Average Roadside Traffic

85 Inside a Bus

95 Inside a Tube Train

105 a Pop Group at 20 metres

115 a Loud Car Horn at 1 metre

125 a Pneumatic Drill

135 the threshold of Pain

Good, but we can do better. We've split our code into a series
of subroutines, but all the data held in variables is strung across
the code. Things will be much clearer in our main code if we pass
variables in and out of subroutines. Let's rework our main program
with this in mind:

#!/usr/bin/perl

use strict;

Program to report on decibels - noise_5

my ($userval,$text);

$userval = get_user_value();

$text = get_near_match($userval);

print_results($userval,$text);

###

sub get_user_value {

Ask user to enter a value in decibels

print "Please enter a value in decibels: ";

chop (my $yousaid = <STDIN>);

if ($yousaid !~ /^([01]?\d{2}|[5-9])$/) {

die ("Must specify number in range 5 to 199\n");

module Q904 Analysing a Programming Task

Learning to Program in Perl 69

}

$yousaid;

returns the value type in if it's valid

}

##

sub get_near_match {

my $yousaid = $_[0]; # collect incoming parameter

my ($best_so_far, $best_text);

get next value down from the data

while data is available ... read it

while (my $preset = <DATA>) {

extract value and text

my ($val,$text) = split(/\s+/,$preset,2);

is it larger than the user's value?

next if ($val > $yousaid);

have we already got a higher value?

next if ($val < $best_so_far);

save as best!

$best_so_far = $val;

$best_text = $text;

end of loop

}

$best_text; # return value

}

###

sub print_results {

my ($yousaid,$best_text) = @_; # print out results

print "$yousaid decibels is a bit noisier than $best_text";

}

__END__

5 the threshold of hearing

15 a Broadcasting Studio

25 a Bedroom at Night

35 a Library

45 a Family Living Room

55 a Typical Office

65 Conversational Speech

75 Average Roadside Traffic

Chapter 7 module Q904

70 Well House Consultants

85 Inside a Bus

95 Inside a Tube Train

105 a Pop Group at 20 metres

115 a Loud Car Horn at 1 metre

125 a Pneumatic Drill

135 the threshold of Pain

Let's look at some of the detail there:

use strict;

We've told Perl that we want all variables to be declared so that
they're only shared between subroutines if we take explicit actions
to share them. Remember that by default, Perl variables are global
and you must declare them as my variables to limit their scope.
strict doesn't actually add any extra facilities; in fact all it

does is gives you compile-time errors if any of your variables aren't
declared. It is good to get into the habit of using strict since it
picks up subtle, difficult-to-locate programming errors.

Within our main code, we then wrote:

my ($userval,$text);

to declare the variables $userval and $text as local (my)
variables.

Our subroutine calls became:

$userval = get_user_value();

get_user_value requires no input parameters, but it returns
a parameter which we have chosen to store in $userval. This is
the decibel level that we're interested in comparing to.

$text = get_near_match($userval);

We're passing $userval in to get_near_match, which uses
it to look up the data. It passes back a text string in $text.

print_results($userval,$text);

We're passing in the original value entered by the user, and the
response text, for formatting and printing. There's no value
returned to us by print_results.

Within the subroutines, variables must be myed, and
parameters picked up and returned.

module Q904 Analysing a Programming Task

Learning to Program in Perl 71

Here's the code of get_user_value:

sub get_user_value {

print "Please enter a value in decibels: ";

chop (my $yousaid = <STDIN>);

if ($yousaid !~ /^([01]?\d{2}|[5-9])$/) {

die ("Must specify number in range 5 to 199\n");

}

$yousaid;

}

Remember that a subroutine returns the last result of the last
statement it contains; in this case the contents of the variable
$yousaid, and no parameters are passed into the subroutine.

On the other hand, subroutine print_results is called with
two parameters; they'll be passed in through the special list
@_, and we'll usually copy such parameters into local variables.

sub print_results {

my ($yousaid,$best_text) = @_;

get_near_match is just called with a single parameter:

sub get_near_match { my $yousaid = $_[0];

7.3 Summary

In this module, you've learnt how you must analyse and
understand the task you'll be undertaking. Take great care to
understand what your inputs are, and how you generate your
outputs from them.

Flowcharting can be of great assistance in breaking down and
understanding a task, and you can break a task down into a series
of more detailed boxes if you wish. This can be translated into
subroutines in Perl – a good idea as it helps you develop your
code section-by-section, and later will let you re-use common
code in other applications.

Chapter 7 module Q904

72 Well House Consultants

Exercise

Learning to Program in Perl 73

8 Initial String Handling

You've read character strings and written them out, but your
handling of text has so far been very limited.

You can read a character string into a variable, and use the
chop (or the chomp) function to remove the new-line character
on the end.

But that's just the start. Perl has so many facilities for handling
strings that you would feel overwhelmed if you tackled them all at
once. So here's the first section.

8.1 String handling functions

Perl has facilities for looking for individual characters or groups
of characters within strings, for finding out the length of strings,
and for extracting part of a string.

#!/usr/local/bin/perl

string - some string functions

print "Enter your name ";

chop ($name = <STDIN>);

$nchars = length($name);

$nc = "Name is % characters long\n";

$pspace = index($name," ");

if ($pspace >= 0) {

if (index($name," ",$pspace+1) > 0) {

die "Can't handle more than 2 names\n";

}

$first = substr($name,0,$pspace);

$rest = substr($name,$pspace+1);

print "that's $rest, $first for indexing\n";

} else {

$first = $name;

$rest = "not stated";

}

$banner = "Hello ".$first." and welcome\n";

$say = "Your surname is $rest\n";

substr($nc,8,1) = $nchars;

print $banner,$say,$nc;

We've used the following functions:

seal% string

Enter your name Graham Ellis

that's Ellis, Graham for indexing

Hello Graham and welcome

Your surname is Ellis

Name is 12 characters long

seal% string

Enter your name Graham

Hello Graham and welcome

Your surname is not stated

Name is 6 characters long

seal% string

Enter your name Graham J Ellis

Can't handle more than 2 names

seal%

Figure 33

Running Perl program "string".

Chapter 8 P205

74 Well House Consultants

•length to find out the length of a string

•chop to remove the last character of a string

•index to find the first occurrence of one string in another

•index (different call) to find the next occurrence

•substr to extract part of a string

•substr (different call) to edit a string

and there are a number of other functions you might wish to use
as well:

•rindex find the last occurrence of one string in another

•lc convert string to lower case

•lcfirst convert 1st character of string to lower case

•uc convert string to upper case

•ucfirst convert 1st character of string to upper case

•sprintf format a string (we come back to this later)

Thus:

#!/usr/local/bin/perl

proper

print "name: "; $name = <STDIN>;

print ("hello ", ucfirst lc $name);

8.2 String handling operators

As well as the functions listed above, the following operators
are designed for use on strings:

. join strings together

x duplicate string on left by number of times on right

(e.g. "allo" x 3 is "alloalloallo")

".." convert string in quotation marks into a text string

Double-quoted strings

The double-quoted string interpretation is very clever. We've
already used it to interpret variables, but it can do much much
more! The following special codes are recognised by the "
operator:
\n new-line character
\t tab character
\a alert character
\r carriage return
\f form feed
\b back space
\e escape character

Octal, hexadecimal and control codes may also be specified:
\243 pound sign1

\xa3 pound sign
\cJ line feed

seal% proper

name: graham

hello Graham

seal% proper

name: GRAHam

hello Graham

seal%

Figure 34

Running Perl program "proper".

1 On Microsoft Windows fonts, the pound sign is \234 or \1x8a

P205 Initial String Handling

Learning to Program in Perl 75

Variables are also interpreted in line.
$... scalar variable
@... list (later!)
If you actually want one of these special characters to appear

in a string, you should precede it with a \, thus:
\$ dollar character
\@ "at" character
\" double-quote character
\\ backslash character

And finally, you can force upper case and lower case within the
string:
\l next character lower case
\L subsequent characters lower case
\u next character upper case
\U subsequent characters upper case
\E indicates the end of the \U or \L

Here are some in use:

#!/usr/local/bin/perl

prop2

print "name: "; chop($name = <STDIN>);

print "amount: "; chop($amount = <STDIN>);

print

"hi \L\u$name\E.\nThe amount is \xa3$amount\n";

Single-quoted strings

There will be occasions when you want to print out a character
string exactly, and the double quotes would cause unwanted
interpretation.

This can be achieved by using single quotes rather than double
quotes.

qq and q strings

There may also be occasions that you want to use a different
delimiter for your string. For example, you might have a sentence
in the variable $saying that you want to print out.
 print "\"$saying\" he said\n";

It works, but you can select an alternative delimiter using a qq
notation:
 print qq-"$saying" he said\n-;

You can go further and replace the alternative delimiter with
brackets:
 print qq("$saying" he said\n);

A similar scheme works for single-quoted text strings, but using
a single letter q, thus:
 print q("$saying" he said\n);

seal% prop2

name: grAham

amount: 2.46

hi Graham.

The amount is £2.46

Figure 35

Running Perl program "prop2".

Chapter 8 P205

76 Well House Consultants

#!/usr/local/bin/perl

prop3

print "name: "; chop($name = <STDIN>);

print "amount: "; chop($amount = <STDIN>);

print

"hi \L\u$name\E.\nThe amount is \xa3$amount\n";

print

'hi \L\u$name\E.\nThe amount is \xa3$amount\n';

$saying = "It's raining";

print "\n";

print "\"$saying\" he said\n";

print qq-"$saying" he said\n-;

print qq("$saying" he said\n);

print q("$saying" he said\n);

Here documents

Imagine that you want to print a lot of lines. Would you use a lot
of print statements?

There's an alternative: print <<"FRED";
 line to print
 next line, addressed to $name
 and another line
 FRED
It's called a "here" document and it's very useful for blocks such

as copyright notices, the headings for web pages, addresses and
the like.

The double quotes on the first line are optional1 and they define
a string that must appear on a line on its own to terminate the
string. The ; to end the statement may appear on the same line
as the print statement, or after the block, but not on the line with
the terminating string.

Do not leave a space between the << and the following char-
acter or you'll find your here document being terminated at the
next blank line!

8.3 Comparing strings exactly

We've read, manipulated and printed out strings. But we
haven't yet asked the question "Does string $g contain the same
text as string $h?"

You might think I could write
 if ($g == $h) ...

but that will not work.
Why? Because == is a numeric operator and it treats the two

things it's comparing as numbers.
By way of example, let’s say that $g contained the word

"tomato" and $h contained the word "bacon". What would the
numeric value of $g be? Zero. What’s the numeric value of $h?
Also zero. The two values are the same, so $g == $h is true.

seal% prop3

name: grAHAM

amount: 12.24

hi Graham.

The amount is £12.24

hi \L\u$name\E.\nThe amount is

£$amount\n

"It's raining" he said

"It's raining" he said

"It's raining" he said

"$saying" he said\nseal%

Figure 36

Running Perl program "prop3".

1 But it is recommended that you use the double quotes.

P205 Initial String Handling

Learning to Program in Perl 77

Err ... ?
If I want to compare two strings, I write
 if ($g eq $h) ...

and that will perform a string equality test. Exactly what I want to
use to compare "tomato" and "bacon".

String comparison operators:
eq returns true if the strings are identical
ne returns true if the strings are not identical
lt returns true if the first string is lexically less than the

second
le returns true if the first string is lexically less than the

second, or identical
gt returns true if the first string is lexically greater than the

second
ge returns true if the first string is lexically greater than the

second, or identical
Common pitfalls and things you should be aware of all hinge

around the word "identical". These tests are case significant --
"cat" is NOT "Cat". If one string has a new line on the end and the
other does not, the lines do NOT match. If one string has a space
but the other has a tab, they do NOT match

Of course, I could force a match ignoring case:
 if (lc ($g) eq lc($h)) ...

but there is a better way.

8.4 Comparing strings to regular expressions

Let's say that I want to see if $g contains "bacon". Well, not
exactly " b a c o n ".

"bacon" is acceptable, or "Bacon" or either of those preceded
or followed by any white space characters. That's easy when you
know how:

 if ($g =~ /^\s*[Bb]acon\s*$/) ...
We read that as:
$g contents of $g
=~ is matched to
/.../ a regular expression.

and the regular expression reads:
 ^ starting with
\s white space
* zero or more of previous item (white space)
[Bb] Upper or lower case B
acon the letters a-c-o-n, all lower case
\s white space
* zero or more of previous item
$ and that's the end of the string
There's also another pattern match operator, so the complete

set is
=~ returns true if the string matches the regular

expression
!~ returns true if the string does NOT match the regular

expression
Let's try out that example in a program:

Chapter 8 P205

78 Well House Consultants

#!/usr/local/bin/perl

pig - looks to match "Bacon"

print "Breakfast: ";

chop ($g = <STDIN>);

while ($g) {

 if ($g =~ /^\.*[Bb]acon\.*$/) {

 print "Yes\n";

 } else {

 print "No\n";

 }

 print "Next meal: ";

 chop ($g = <STDIN>);

}

We're not going to have you write complex regular expressions
yet, but we will introduce you to a few more features of them and
have you try them out on a testbed program called "pattern". The
program searches a database for towns and other places. For
your reference, here's the code; the only new thing apart from
regular expressions is the opening / reading a file.

We'll come back to it in a few minutes when we simplify some
of the code!

#!/usr/local/bin/perl

pattern - dialling code match testbed!

print "enter a pattern ";

chop ($plook = <STDIN>);

while ($plook) {

open (FH,"towns"); # Open a file

while ($town=<FH>){ # read from that file

chop $town;

if ($town =~ /$plook/) {

print "$town\n";

}

}

print "enter a pattern ";

chop ($plook = <STDIN>);

}

Let's try some regular expression matching.

seal% pig

Breakfast: bacon...

Yes

Next meal: ...bacon

Yes

Next meal: sausage.and.bacon

No

Next meal: .Bacon

Yes

Next meal: Bacon!

No

Next meal:

seal%

Figure 37

Running Perl program "pig". We have replaced the back-
slashes with \. in our example so you could see where we
placed the white spaces.

P205 Initial String Handling

Learning to Program in Perl 79

First, letters and digits are matched exactly. But by default the
matching string can appear anywhere in the string being tested.

We can use anchors -- a ^ on the start or a $ on the end --
to request an explicit match to the start or the end of the string. If
we use both, we're looking to match the whole string.

seal% pattern

enter a pattern Rock

Rockcliffe(Cumbria)

Castle_Rock

Rock

Rockingham

Rockcliffe(Kirkcudb.)

Rockbourne

Wetley_Rocks

Standon_Rock

enter a pattern

seal%

Figure 38

Running Perl program "pattern" looking for letters and
digits that match exactly.

seal% pattern

enter a pattern ^Rock

Rockcliffe(Cumbria)

Rock

Rockingham

Rockcliffe(Kirkcudb.)

Rockbourne

enter a pattern Rock$

Castle_Rock

Rock

Standon_Rock

enter a pattern ^Rock$

Rock

enter a pattern

seal%

Figure 39

Running Perl program "pattern" looking for an explicit
match using an anchor.

Chapter 8 P205

80 Well House Consultants

As well as matching explicit characters, we can specify groups
of characters in square brackets. These groups can also use a
special - character to indicate a range.

seal% pattern

enter a pattern [Rr]ock$

Castle_Rock

Rock

Grays_Thurrock

Gourock

Standon_Rock

Barrock

Brock

enter a pattern [s-z]ock$

Dervock

Burton_Bradstock

Powerstock

Kessock

Ibstock

Brigstock

Crantock

Corsock

Beattock

Radstock

Tavistock

Hemyock

Cotterstock

Martock

Woodstock

enter a pattern

seal%

Figure 40

Running Perl program "pattern" looking for explicit
characters.

P205 Initial String Handling

Learning to Program in Perl 81

If a group of this sort starts with a ^ it means "not" Thus ...

There's a number of pre-defined groups available:
\s any white space character
\d any digit
\w any word character (letter, digit, underscore)

and the opposite of those:
\S and character that is NOT white space
\D and character that is NOT a digit
\W and character that is NOT a word character

Finally, a . means ANY one character.

seal% pattern

enter a pattern [^A-Za-kq-z]ock$

Challock

Cumnock

New_Cumnock

Banknock

Greenock

Dymock

Cannock

Kilmarnock

Matlock

Tredunnock

Porlock

Gargunnock

Much_Wenlock

Gillock

Speaking Clock

enter a pattern

seal%

Figure 41

Running Perl program "pattern" looking for words that do
not contain certain letter combinations.

seal% pattern

enter a pattern \wcall

Brinscall

Scalloway

Riccall

High_Ercall

Childs_Ercall

No_charge_to_caller

enter a pattern \Wcall

Do NOT display my number on "call

return" (prefix)

BT Credit card call (prefix)

Who called last message

Local area call

Local area call

Local area call

Local area call

Local area call

Local area call

Local area call

Local area call

enter a pattern

seal%

Figure 42

Running Perl program "pattern" looking for any pre-
defined groups.

Chapter 8 P205

82 Well House Consultants

And finally for this first taste of regular expressions, we'll intro-
duce you to some counts.

? 0 or 1 of the previous character
* 0 or more of the previous character
+ 1 or more of the previous character

seal% pattern

enter a pattern Up*i

Uig

Uppingham-(Oakham)

Uppington

enter a pattern Up?i

Uig

enter a pattern Up+i

Uppingham-(Oakham)

Uppington

enter a patternseal%

seal

Figure 43

Running Perl program "pattern" using counts.

P205 Initial String Handling

Learning to Program in Perl 83

8.5 Summary

Perl variables can hold character strings and many functions
are provided to manipulate those strings. There are also a number
of string operators such as . and x.

Within double-quoted strings, you can use special sequences
such as \n for a new line and $var for a variable. If you want
to prevent this, use a single quote instead to have all characters
taken literally.

Alternative notations:
"hello" or qq-hello- or qq(hello) or here documents

To compare strings exactly, use operators such as eq. To see
if a string matches a pattern, use =~ instead.

Patterns are written between / characters and may include
anchors
 ^ to ask for a match at the start
$ to ask for a match at the end

character groups
[Bb] to match any character from a list
\s to match any white space character
\d to match any digit
\w to match any alphanumeric
\S to match any nonwhitespace
\D to match any nondigit
\W to match any nonalphanumeric
. to match any 1 character

counts
? to match 0 or 1 of previous character
* to match 0 or more of previous character
+ to match 1 or more of previous character

and all upper case, lower case letters and digits otherwise match
exactly.

These patterns are also known as regular expressions and we'll
visit them again later.

Chapter 8 P205

84 Well House Consultants

Exercise

Run our pattern program to find all towns ...
 a) All towns starting "Mat"
 b) All towns including "Mat"
 c) All towns including "Br" and later "oll"

Our example answer hasn’t got a name

Modify the program of the previous section to exit when the user enters the word end (upper case or lower case).
Modify it to print out a pound sign before the total amount.

Our example answer is autumn

Write a new program to read in a sentence, and print it out with the first character forced to a capital letter and with
an exclamation mark on the end if the sentence wasn't complete.

Our example answer is winter

Sample

graham@otter:~/profile/book> pattern

enter a pattern [work out what you must type]

Matlaske

Matlock

enter a pattern [work out what you must type]

Matlaske

Matlock

Worth_Matravers

enter a pattern [Work out what you must type]

Brent_Knoll

Bridge_Sollars

enter a pattern

Sample

graham@otter:~/profile/answers_pp> autumn

Enter first value 12.50

next value: 3.22

next value: End

2 items, totalling 15.72

graham@otter:~/profile/answers_pp>

Sample

graham@otter:~/profile/answers_pp> winter

enter text: Is this line punctuated?

Is this line punctuated?

graham@otter:~/profile/answers_pp> winter

enter text: graham wrote this

Graham wrote this!

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 85

9 More Loops and
Conditionals

9.1 The variety that is Perl

Up to this point in the course, you've been using if state-
ments for conditional text and while loops to repeat blocks of code.
And you'll continue to use these; they're fundamental structures.
But sometimes they're a bit wordy and there can be a better way
of doing things.

In fact, there are so many ways to do these things in Perl that
we'll show you examples of the most common ones and summa-
rise some of the "well, if you must" type stuff.

Although we're talking about writing programs on this course,
you may well find that a lot of your time is spent modifying,
extending and repairing code that you've written earlier, or has
been written by others. You should consider this maintenance
aspect as you write your programs:

• Comment the programs well

• Design them in a modular way (structure or object oriented,
a topic for later!)

• Have a version numbering system

• Write your Perl in such a way that it's easy for others to follow

• Set and use programming standards within your team or
organisation.

These last two points mean that you should not try to use every
different construct of the language!

Because others will not have stuck to guidelines in the past,
anyone who's responsible for maintaining code probably does
need to have a good overview of all the facilities of the language,
though.

9.2 More conditional statements

Here's a short program ... some of you may remember some-
thing similar from the Perl Basics course!

#!/usr/local/bin/perl

telegram - an if statement

print "please enter your age: ";

$age = <STDIN> ;

$togo = 100-$age;

if ($age > 100)

 {

 print "well done\n";

 } else {

 print "$togo years to your telegram\n";

 }

seal% telegram

please enter your age: 45

55 years to your telegram

seal% telegram

please enter your age: 102

well done

seal%

Figure 44

Running Perl program "telegram".

Chapter 9 P206

86 Well House Consultants

If -- single statement rather than a block

You've been writing
 if ($age > 100)

 {

 print "well done\n";

 }

and if you've written C or Java in the past, you’ve been wishing you
could leave out those braces. In Perl you can't, but you can write
the if statement the other way around:

 print "well done\n" if ($age > 100);

Good idea?
For: Saves coding. Makes it obvious it's a single statement

block.
Against: Not intuitive. Conditional tends to get lost in body of

code.

Unless -- an inverted if statement

You could replace
 if ($age > 100)

 {

 print "well done\n";

 }

by
 unless ($age <= 100)

 {

 print "well done\n";

 }

An unless statement is the same as an if statement,
except that the block will be performed unless the condition is true.
It's rather like an "if not". Yes, you could have also written
 if (! ($age <= 100))

 {

 print "well done\n";

 }

Just like if, you can add an else block after an unless
statement. Just like if, you can write a single statement condi-
tional the other way around:
 print "well done\n" unless ($age <= 100);

Good idea?
For: Sometimes saves writing awkward negative conditions.
Against: Perhaps obscure for future maintainers

P206 More Loops and Conditionals

Learning to Program in Perl 87

#!/usr/local/bin/perl

tel2 - some if alternatives

print "please enter your age: ";

$age = <STDIN> ;

$togo = 100-$age;

print "Well done ... " if ($age > 100);

print "WELL done\n" unless ($age <= 100);

unless ($age > 100) {

 print "$togo years to your telegram\n";

 }

Conditional operators

Consider the following statement:
 if ($age < 18 && $alcohol > 0) { print "no ...

You're checking to see if you can make a legal sale.
"If the age is less than 18, and the person has more than zero

alcohol in his cart, reject the sale."
What if the person was aged 18 or over? Do you need to even

look whether he has alcohol? No, it's legal anyway.
Perl knows this. It will only make the second check if necessary,

in this case only if the purchaser is less than 18.
You can made use of this facility. Let's look at:

if ($havebasket > 0 && ($rdbasket = <STDIN>))

 { print "sale";}

What does this do?

• Check and see if our customer has a basket

• If so, read basket contents and save to $rdbasket

• And if there was something in the basket, print "sale"

So we have the basket being read only if the customer has a
basket. If we didn't want to print the word "sale" we could just have
written
($havebasket > 0 && ($rdbasket = <STDIN>)) ;

or even
$havebasket > 0 && ($rdbasket = <STDIN>) ;

We now have conditional code -- just the facility the if state-
ment itself provides -- without the need for the word if.

• You can read && as "and if true"

• You can read || as "and if false" or as "or".

Let's use them on the telegram example:

#!/usr/local/bin/perl

tel3 - avoiding an if statement

print "please enter your age: ";

$age = <STDIN> ;

$togo = 100-$age;

$age > 100 && print "well done\n";

$age > 100 ||

print "$togo years to your telegram\n";

seal% tel2

please enter your age: 102

Well done ... WELL done

seal% tel2

please enter your age: 53

47 years to your telegram

seal%

Figure 45

Running Perl program "tel2".

seal% tel3

please enter your age: 94

6 years to your telegram

seal%

Figure 46

Running Perl program "tel3".

Chapter 9 P206

88 Well House Consultants

You can use multiple && and || operators in a single state-
ment; usual rules for brackets apply. Thus:
$havebasket > 0 && ($rdbasket = <STDIN>) &&

print "sale";

And there are some very common uses:
$age >= 18 || die "No sale. Customer too young\n";

Good idea?
For: Short, quick and clean
Against: Confusing to newbies. Limited to single statement.
You can also use the words and and or to replace && and ||,

but at a different precedence.

The ? : operator

&& and || gave you shorthands for simple if and unless
statements, but not a quick and easy way of writing if else. It's
very common to write code such as
if ($age > 100)

{

print "well done\n";

} else {

print "$togo years to your telegram\n";

}

Perl provides an operator in three parts to help you with this.
 (condition) ? (true action) : (false action)

so that you could have written
print ($age > 100) ? "well done\n" :

"$togo years to your telegram\n" ;

or even
($age > 100) ? print "well done\n":

print "$togo years to your telegram\n";

Another very common use:
 $largest = ($g>$h)?$g:$h;

and yet another:
print "You asked for ",$n,($n!=1)

?" places\n":" place\n";

In use:

#!/usr/local/bin/perl

tel4 - an if shorthand

print "please enter your age: ";

$age = <STDIN> ;

$togo = 100-$age;

($age > 100) ?

 print "well done\n":

 print "$togo years to your telegram\n";

print "please enter number of places: ";

chop ($n = <STDIN>);

print "You asked for ",$n,($n!=1)?" places\n":

" place\n";

seal% tel4

please enter your age: 34

66 years to your telegram

please enter number of places: 2

You asked for 2 places

seal% tel4

please enter your age: 101

well done

please enter number of places: 1

You asked for 1 place

seal%

Figure 47

Running Perl program "tel4".

P206 More Loops and Conditionals

Learning to Program in Perl 89

Good idea?
For: Short, quick and clean
Against: Confusing to Perl newbies. Limited to single state-

ment. ":" can get mistaken for ";" by the human reader

9.3 More loop statements

The while loop has, and will continue, to serve you well, but
there are other loops too.

The until loop

Just as you could invert if by using unless, you can invert
while using until.

Single statement while and until loops

Just as you can remove the { and } from a single statement if or
unless (provided that you also write the condition on the end),
so you can with while and until.

#!/usr/local/bin/perl

power - next power of 2 above a number

print "Enter a number: ";

$num = <STDIN>;

$power = 1;

$power *=2 until ($power >= $num);

print "next power of 2 is $power\n";

The for loop

Very frequently, you'll want to run a loop a certain number of
times. Five working days in the week, or $ndays days on a
course:

$now = 1;

while ($now <= 12) {

print $now," times ",$number,

" is ",$now*$number,"\n";

$now++;

}

It works. But it's such a common requirement and the handling

of the loop -- the variable $day -- is in three different statements.
In this simple case they're all within five lines of code, but imagine
a much longer program in which they are a l-o-n-g way apart. Easy
to follow? No!

The for loop lets you take the three elements that control a
loop such as this:

• Initial setting (s)

• Condition

• Action(s) before retesting the condition

and put all those elements into a single statement:
for ($now = 1;$now <= 12;$now++) {

print $now," times ",$number,

" is ",$now*$number,"\n";

}

seal% power

Enter a number: 4

next power of 2 is 4

seal% power

Enter a number: 100

next power of 2 is 128

seal% power

Enter a number: 178

next power of 2 is 256

seal%

Figure 48

Running Perl program "power".

Chapter 9 P206

90 Well House Consultants

The round brackets of a for loop must contain exactly two semi-
colons. The conditional section (between them) must give a true
or false result. The first and third sections may be empty, or may
even contain a comma separated list. It's possible to write some
very confusing for loops ... best to keep them simple rather than
trying to be too clever. The first loop in this example is good; the
second may give you a headache!

#!/usr/local/bin/perl

forloop - for loop

#

print "Enter a number = ";

chop ($number = <STDIN>);

for ($now = 1;$now <= 12;$now++) {

 print $now," times ",$number,

 " is ",$now*$number,"\n";

 }

print "and also\n\n";

for (;$div < 12;

 print (++$div," divided by ",$number),

 print (" is ",$div/$number,"\n")){};

9.4 Breaking a loop

There will be times that you're in a loop, but as a result of testing
a condition, you’ll want to do one of these:

• Get out of the loop and carry on beyond

• Go around the loop again, with the same initial condition

• Move on to the next iteration of the loop

You can do each of these, using

last; to leave the loop

redo; to rerun with the same initial condition

next; to move on to the next iteration

next is an example using all three. This program asks the user
to enter the number of course lunches required for each day of a
five-day week. If the user enters a number over 12, an error is
flagged and the user is prompted again -- redo;

If the user enters 0, the rest of that loop iteration is skipped as
there's no need to run the code to place the order -- next;
If the user enters "end" then he's signalling that the course is
finished and there are no more days to ask for -- this is the last;
time through the loop.

seal% forloop

Enter a number = 4

1 times 4 is 4

2 times 4 is 8

3 times 4 is 12

4 times 4 is 16

5 times 4 is 20

6 times 4 is 24

7 times 4 is 28

8 times 4 is 32

9 times 4 is 36

10 times 4 is 40

11 times 4 is 44

12 times 4 is 48

and also

1 divided by 4 is 0.25

2 divided by 4 is 0.5

3 divided by 4 is 0.75

4 divided by 4 is 1

5 divided by 4 is 1.25

6 divided by 4 is 1.5

7 divided by 4 is 1.75

8 divided by 4 is 2

9 divided by 4 is 2.25

10 divided by 4 is 2.5

11 divided by 4 is 2.75

12 divided by 4 is 3

seal%

Figure 49

Running Perl program "forloop".

P206 More Loops and Conditionals

Learning to Program in Perl 91

#!/usr/local/bin/perl

jumps - loop

for ($day = 1; $day <=5; $day++) {

print "Number of lunches, day $day: ";

chop ($ndins = <STDIN>);

$ndins =~ /^\s*end\s*$/ && last;

next if ($ndins == 0);

if ($ndins > 12) {

print "Too many. Try again\n";

redo;

}

print

"Ordering $ndins dinners for day $day\n";

$ndtot+=$ndins;

}

print "Total dinners - ",$ndtot+0,"\n";

Although illustrated with a for loop, these statements can
also be used with other loops such as while and until, and
with the foreach loop we'll meet later.

9.5 Labels

"last gets you out of a loop". Yes, but which loop?
The normal answer is "the loop that you're in'" but what if you're

in a loop within a loop?
The exact rule is that "last gets you out of the innermost loop

which you are in".
But what if that's not what you want? What if you want to get out

of two nested loops?

• Label (name) the block you want to jump out of.

• Specify the label after the word last.

Labels must start at the beginning of a line and be the only thing
on that line.

They do not follow the normal white space rules. The text of a
label comprises a series of alphanumeric characters followed by a
colon.

When you reference a label -- in this example in the last
statement -- they follow the normal syntax rules. For example,
they may appear anywhere on a line. The : should be omitted.

Next is an example (our course lunches again!).
If you enter end (lower case) it's the end of entry for this week.

If you enter END (upper case) it's the end of the whole thing.

seal% jumps

Number of lunches, day 1: 4

Ordering 4 dinners for day 1

Number of lunches, day 2: 20

Too many. Try again

Number of lunches, day 2: 2

Ordering 2 dinners for day 2

Number of lunches, day 3: 0

Number of lunches, day 4: end

Total dinners - 6

seal%

Figure 50

Running Perl program "jumps".

Chapter 9 P206

92 Well House Consultants

#!/usr/local/bin/perl

jump2 - exit 2 loops

week:

for ($week =1; $week <=4; $week++) {

for ($day = 1; $day <=5; $day++) {

print

"Number of lunches, week $week, day $day: ";

chop ($ndins = <STDIN>);

$ndins =~ /^\s*END\s*$/ && last week;

$ndins =~ /^\s*end\s*$/ && last;

$ndtot+=$ndins;

}

print "Dinners to date - ",$ndtot+0,"\n";

}

print "Total dinners - ",$ndtot+0,"\n";

Perl has no switch or case statements, using a label and a block
they're unnecessary:

#!/usr/bin/perl

while (1) {

print "please enter a word: ";

chop ($word = <STDIN>);

$co++;

choose:

{

($word =~ /quit/) and die "Leaving the program\n";

($word =~ /count/) and print ("count is $co\n") and last choose;

($word =~ /echo/) and print ("hello\n") and last choose;

print "eh?\n";

}

}

9.6 The goto statement

Get two programmers together, and suggest that "you don't
need a goto statement" and you're likely to see a major argument
break out. Some people find it very useful to be able to jump
around their programs, but others say it makes the code very hard
to test, hard to follow and hard to modify later.

But the philosophy of Perl is "if it might be useful, provide it".
Syntax:
 goto label

seal% jump2

Number of lunches, week 1, day 1: 3

Number of lunches, week 1, day 2: 4

Number of lunches, week 1, day 3: 2

Number of lunches, week 1, day 4: end

Dinners to date - 9

Number of lunches, week 2, day 1: 3

Number of lunches, week 2, day 2: 2

Number of lunches, week 2, day 3: 9

Number of lunches, week 2, day 4: END

Total dinners - 23

seal%

Figure 51

Running Perl program "jump2".

P206 More Loops and Conditionals

Learning to Program in Perl 93

You may jump out of a block, but never into a block
You'll learn later in this course that goto can do other things

as well. You can get it to jump to a whole variety of different labels
depending upon the value of some variable, and it does something
which even the official texts call "highly magical" in certain other
circumstances.

9.7 Summary

Should you only want to perform a single statement after an
if, you can write it back-to-front and leave out the { and }. You
can also replace if with unless to invert the condition.

An expression to the right of a && (or the word and) is evalu-
ated only if the condition to the left is true.

An expression to the right of a || (or the word or) is evalu-
ated only if the condition to the left is false.

The ?...: operator gives you a "shorthand" if ... else
construct.

The for loop can be used as an elegant replacement for
while loops.
for (initial; condition; subsequent) { ...

Within a loop, you can use
last to exit the loop
redo to rerun the current pass
next to move on to the next pass
Normally, these affect your innermost loop but you can use

labels so that they affect an outer block.
A label appears on a line on its own, followed by a colon.
The goto statement is available, but is poor practice and

inefficient.

Chapter 9 P206

94 Well House Consultants

Exercise

Please try to do the following exercise WITHOUT using the words "while" or "if" in your program.
Write a program to ask the user to enter four numbers each between the value of 1 and 6. If the user enters a

number below 1 or over 6, ask him to enter that number again. If the user enters the word END, stop reading numbers.

• Print out the count, average and total of all the numbers entered. Take care to print an appropriate error message
for the average if no numbers were entered.

Our example answer is dice

Sample

graham@otter:~/profile/answers_pp> dice

Value of die 1: 5

Value of die 2: 7

Invalid

Value of die 2: 3

Value of die 3: 1

Value of die 4: 2

count: 4

total: 11

average: 2.75

graham@otter:~/profile/answers_pp> dice

Value of die 1: 1

Value of die 2: 2

Value of die 3: 4

Value of die 4: end

Invalid

Value of die 4: END

count: 3

total: 7

average: 2.33333333333333

graham@otter:~/profile/answers_pp> dice

Value of die 1: END

count:

total:

average: infinity

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 95

10 File Handling

You've read from the keyboard, written to the screen. STDIN
and STDOUT have been explained to you and, if you're familiar
with the operating system on your computer, you should be able
to read or write files instead of using your keyboard or screen. But
what if you want to do both? What if you want several files at the
same time?

10.1 File input and output

You've only got one keyboard, or one form source, so when you
start a Perl program the file handle STDIN is available to you
without you having to ask for any special connection.

But on your disk, there will be thousands of files.

• No chance that you'll want more than a few for any
application

• Impractical to have them all selected at once

Therefore, before you use a file you need to select it.

File Handles

Today you might want to read from a file called "france.txt" and
tomorrow from a file called "sweden.txt" but you don't want to have
to go all through your program making changes. So we won't keep
referencing a file by its name. Rather, we'll create a special vari-
able called a "file handle" and we'll use that as our route to the file.
STDIN is a file handle variable.
File handle variables start with a letter, followed by any number

of letters, digits and underscores. Conventionally, they're written
in all upper case. As with regular variables, you can use almost
any name you want, but if you use one of the following, you'll
conflict with Perl and remove access to a default facility:
DATA

STDIN

STDOUT

STDERR

The open function

Let's open the file named in the variable $country for read
access:

open (PORTS,$country);

or open (PORTS,"$country");

or open (PORTS,"<$country");

That will create a new file handle called "PORTS" and it will
open the file through it. In this case, this means that the start of the
file will be read into memory, not yet passed back to your Perl
program, but there ready. It's more efficient to buffer data than to
read in dribs and drabs.

If we had wanted to open the file for write, instead of read, we
would have written:

Chapter 10 P207

96 Well House Consultants

open (PORTS,">$country"); to open for overwrite
open (PORTS,">>$country"); to open for append
That will create a new file handle called PORTS and open the file

whose name is held through that variable. If the file didn't exist, it
would be created. If it existed and you used >, the old contents
would be deleted. If it existed and you used >>, the file would be
set for you to add information at the end.
open is an operator and it returns a value. True for success,

false for failure. Therefore
open (PORTS,"$country") || die

 "Can't open file\n";

is very common.

Reading from a file handle

You've already seen the "read from" operator <...> on
STDIN. Simply use it on any other input file handle.

Each time you read from the PORTS file handle, a line of text (up
to and including a new line character) is read and, if you give a
variable name, saved into that variable.

Reading starts at the beginning of the file. You'll get the next
line each time you call for another read.

If you get nothing back, not even a new line character, you've
reached the end of the file.

Writing to a file handle

You've already used print to print to STDOUT.
Although you've not been explicit, when you've written
print $var,.....;

you've really meant
print STDOUT $var,.....;

In other words, the print function takes an extra parameter
which is the name of the file handle. So, to write to a file:

print PORTS $var,.....;

Closing a file

If you're about to exit from your Perl program when you finish
with a file, you don't need to worry about closing the file. It will be
done automatically and any remaining data will be written.

Normally, though, you should close your files using the close
function:

close PORTS;

P207 File Handling

Learning to Program in Perl 97

Let's see a simple example of
handling a number of files:

#!/usr/local/bin/perl

fan - fan out towns

based on vowels in name

open (IN,"towns") || die

("No town file to read\n");

open (A,">a.towns");

open (E,">e.towns");

open (I,">i.towns");

open (O,">o.towns");

open (U,">u.towns");

while ($line = <IN>) {

$m = 0;

(++$m && print A $line) if ($line =~ /[aA]/);

(++$m && print E $line) if ($line =~ /[eE]/);

(++$m && print I $line) if ($line =~ /[iI]/);

(++$m && print O $line) if ($line =~ /[oO]/);

(++$m && print U $line) if ($line =~ /[uU]/);

print "No vowels in $line" unless ($m);

}

Other things you can handle through the file interface

As well as files, most operating systems handle devices as if
they were files. So if you're looking to read / write directly from a
serial port or a tape drive, or to access other windows on your
screen (in text mode), you'll follow the instructions as above.
When we come on to file testing, you'll learn that you can even
check a file name to see if it really is a file, or if it's a device of some
sort.

With operating systems that support multiple processes at the
same time (very few these days do not), you can start up another
process from within your Perl program and read or write to or from
that as if it was a file. This procedure is called "piping" and will
probably make your code operating-system dependent.

Let's write a Perl process that starts two more processes -- one
to give a disk utilisation report, and the other to email the report
onwards.

You'll notice that we use a vertical bar character at the start
(write to process) or end (read from process) of our file name
parameter.

THIS IS THE TYPICAL GLUEWARE ROLE OF PERL!!

seal% fan

No vowels in Crymych

No vowels in Dyffryn

No vowels in Ynysybwl

No vowels in Glyndwr

No vowels in Cwm

No vowels in Dryslwyn

No vowels in Lydd

No vowels in Rhyl

No vowels in Bwlch

No vowels in Lymm

No vowels in Tydd

No vowels in Lyth

seal% ls -l *.towns

-rw-r--r-- 1 graham wellho 36605 Jan 20 20:36 a.towns

-rw-r--r-- 1 graham wellho 39065 Jan 20 20:36 e.towns

-rw-r--r-- 1 graham wellho 30473 Jan 20 20:36 i.towns

-rw-r--r-- 1 graham wellho 34257 Jan 20 20:36 o.towns

-rw-r--r-- 1 graham wellho 13804 Jan 20 20:36 u.towns

seal%

Figure 52

Running Perl program "fan".

Chapter 10 P207

98 Well House Consultants

Let’s email Lisa a report:

#!/usr/local/bin/perl

piper - email a df report!

#

open (GETSYS,"df -k |") || die

"Can't read pipe\n";

open

(MESSAGE,

"|mail -s \"Disk Usage\" lisa\@wellho.net")

|| die "No email\n";

while ($line = <GETSYS>) {

print MESSAGE $line;

}

Of course, there's no screen output ... but in the end of Lisa's
mailbox:

From graham Wed Jan 20 21:14:48 1999

Return-Path: <graham@wellho.net>

Received: by wellho.net (SMI-8.6/SMI-SVR4)

id VAA09029; Wed, 20 Jan 1999 21:14:48 GMT

Date: Wed, 20 Jan 1999 21:14:48 GMT

From: graham@wellho.net (Graham Ellis)

Subject: Disk Usage

Message-Id: <199901202114.VAA09029@wellho.net>

Content-Type: text

Apparently-To: lisa@wellho.net

Content-Length: 811

Filesystem kbytes used avail capacity Mounted on

/dev/dsk/c0t3d0s0 61615 56225 5329 92% /

/dev/dsk/c0t3d0s6 432839 379122 53285 88% /usr

/proc 0 0 0 0% /proc

fd 0 0 0 0% /dev/fd

/dev/dsk/c0t3d0s7 422223 408607 13194 97% /export/home

swap 130532 16 130516 1% /tmp

/dev/dsk/c0t0d0s0 192783 19090 173501 10% /extra/disc0.slice0

/dev/dsk/c0t0d0s4 481983 74851 406651 16% /extra/disc0.slice4

/dev/dsk/c0t0d0s5 481983 11687 469815 3% /extra/disc0.slice5

/dev/dsk/c0t0d0s6 963895 382751 579538 40% /extra/disc0.slice6

/dev/dsk/c0t0d0s7 6404166 5555652 784473 88% /extra/disc0.slice7

As well as handling other processes like this, file handles can
be used if you want a Perl program to split in two and have both
halves continuing to work on separate tasks. That is known as
"forking" and we'll do this later in the course.

seal% piper

seal%

Figure 53

Running Perl program "piper". But there’s no screen
output.

P207 File Handling

Learning to Program in Perl 99

You can also use file handles to talk to other processes on other
machines on your network ... or indeed on the internet as a whole.
Once again, we do this later on this course and also on our Perl
Advanced - Network Applications course.

In both these last two cases, please note that you use some-
thing else rather than open to create and connect the file handle
in the first place. And you have other issues you need to consider
as well.

10.2 File testing

Did we manage to open our file successfully earlier on in this
section?

Well, yes, we did. Otherwise the open function would have
returned a false value and the die function would have printed
a message to STDERR.

But what if we had wanted to check if a file existed before we
opened it for write, or whether it was a device, or ...

Let's take the question "Does the file "towns" exist?". It's clearly
some sort of equality test.

Numeric equality? No!
String comparison? No.
Pattern match? No!!
It a new type of operator.
Just like we can write - in front of a variable to negate it, so

we can write -e in front of a file name to see it the named file
exists. Let's see some further tests:

-e does it exist?

-d is it a directory?

-z is it empty?

-r can I read it?

-w can I write it?

-x can I execute it?

-f is it a plain file?

There are also a number of other tests which return more than
just true or false:

-M when was it last modified (time ago, in days)

-s how big is it (in bytes)

#!/usr/local/bin/perl

reporter - tell us about files ...

open (FILES,"ls|") || die "Can't read pipe\n";

while ($line = <FILES>) {

chop $line;

print ((-x $line) ? "Can":"Can't",

" execute file $line. Size is ",

-s $line," bytes\n");

}

Can't execute file re-ask. Size is 536 bytes

Can't execute file read_write. Size is 410 bytes

Can execute file reporter. Size is 256 bytes

Can execute file rw. Size is 414 bytes

Can execute file rw2. Size is 414 bytes

Can execute file rw3. Size is 480 bytes

Can't execute file sharecode. Size is 474 bytes

Figure 54

Only just a part of the output from running Perl program
"reporter".

Chapter 10 P207

100 Well House Consultants

10.3 Formatted printing

Earlier in this course, you saw numbers been printed out with
absurd accuracy.

Whilst 1/7 does work out to 0.142857142857143, you'll often
want to print it out as just 0.143.

It's also been hard so far to print information in neat columns as
the number of characters in a value varies, all the other informa-
tion to the right gets messy. You only need look up to the last
example to see the problem!

The print function was great for "quick and dirty" printing, but
if we need more control we should use the printf function.
Although the two functions have similar names, they do different
things, take different parameters and work in different ways.

However, just as you can specify a file handle with print, so
you can with printf.

Here's an example printf:
printf "%.2f degrees f converts to %.2f degrees c\n",$far,$cent;

or
printf STDOUT "%.2f degrees f converts to %.2f degrees c\n",$far,$cent;

The first parameter is different to all the others -- it's a template
to describe how the information should be printed. In this case:

%.2f a floating point number, 2 digits
after the decimal point

degrees f converts to text - print as it is in the format

%.2f another floating point number,
same format

degrees c more text, to print as in the
format

\n a new-line character

The format is what's printed out every time the printf state-
ment is run; the rest of the parameters tell printf what to place
into the variable fields that start with a % character. If too few
parameters are specified, printf fills in with nulls. Too many
and it ignores the excess!

Here are some examples from that printf statement:

If you think this looks similar to the printf function of the C
language, or the one that's in nawk, or the one that's built into
some operating systems these days, you're correct!

There are many more formats available, for example ...

28.00 degrees f converts to -2.22 degrees c

29.00 degrees f converts to -1.67 degrees c

30.00 degrees f converts to -1.11 degrees c

31.00 degrees f converts to -0.56 degrees c

32.00 degrees f converts to 0.00 degrees c

33.00 degrees f converts to 0.56 degrees c

Figure 55

Examples from the printf statement.

P207 File Handling

Learning to Program in Perl 101

Floating point formats

%f just printed out the number in a default way

%.2f printed it out to 2 decimal places

%5.2f printed it out a TOTAL of 5 columns wide, two
decimal places

%05.2f printed it the same way, except if 0 filled leading
spaces

%-5.2f Total of 5 columns, 2 after the "." now LEFT
justified.

%e prints the value in scientific (exponential) form

%5.2e prints (or tried to) print it out in scientific notation
in a total width of 5 columns and to 2 decimal
places. The width isn't enough, so Perl will add
more columns for you.

%8.2e 8 columns wide, scientific

%15.2e 15 columns wide, scientific

You can replace the "e" or "f" with a "g" if you would like to select
which notation's best for any particular number

Formats for whole numbers (integers)

%x print a number in base 16 (hexadecimal)

%o print a number in base 8 (octal)

%d print a number in base 10 (decimal)

Decimal is, of course, the most common, but we must stress
that %d prints a whole number (an integer) to base 10, and not a
number that includes a decimal point. Very confusing if you
forget!!

As with floating point formats, you can specify:

numbers to give a minimum column width

leading 0 to zero fill

leading - to left justify

Formats for variable text strings

%s print a string of characters

Column widths and left justification apply. You can also specify
a . (full stop) to ask for a total field width and a length at which
to truncate the incoming string.

%c print out a single character (from a variable that
contains its ASCII value)

Constant text

Finally, anything that does not start with % in a format string
will be handled as literal text by printf. The usual double quote
rules apply: \n for new line, \\ for a backslash, etc.

It may surprise you that you should use %% if you want to print
out an actual percent character.

Chapter 10 P207

102 Well House Consultants

sprintf

In our earlier section on string handling, we briefly mentioned
sprintf and that it formats text using exactly the same rules as
printf. However, rather than sending the resulting string to a file
handle, it's returned to the programmer as a string. Therefore you
could save it into a variable or perform further manipulation on it.

P207 File Handling

Learning to Program in Perl 103

10.4 Summary

File handles are special variables that don't start with a $ sign
and are usually written in upper case. STDIN, STDOUT and
STDERR are provided as standard, otherwise you must use an
open statement to associate a handle with a file.

By default, Perl opens files for read but you can also specify
">$abc" to open to overwrite
">>$abc" to open to append
"|$abc" to pipe to a command
"$abc|" to pipe from a command
Reading from a file may be done using
 <FH>
Writing may be done using
 print FH $var
You can test whether a file exists by writing
 if (-e $abc) { ...

and many other tests are available.
For more control over printing, use printf instead of print.
 The first parameter to printf is a format
 Subsequent parameters are values to be printed
Within the format, you can use
%f a floating point number
%s a string
%d an integer (decimal)

and so on.
Modifiers can be placed between the % and the letter, thus
%6.2f 6 columns minimum width, 2 figs after decimal place
%02d 2 column minimum width integer, zero filled
%-12s 12 column minimum width string, left justified

Chapter 10 P207

104 Well House Consultants

Exercise

Write a program to read in the file "towns" file line by line, and print out each line ending with the word "Bridge",
with a line number across to the right, like the sample below.

Our example answer is bridges

The "Perl World" theme park opened at 11 in the morning yesterday, and admitted 17 visitors every minute for the
first hour. Visitors each paid 4.75 to enter the park. Produce a file containing a table of takings at 5-minute intervals.
Display what the grand total would be after an hour. The file should contain results like our sample below.

Our example answer is thepark

Sample

 Dunsop_Bridge # town no. 1

 Hubberts_Bridge # town no. 2

 Lowick_Bridge # town no. 3

 Appley_Bridge # town no. 4

 Spean_Bridge # town no. 5

 Hebden_Bridge # town no. 6

 Haydon_Bridge # town no. 7

 Bonchester_Bridge # town no. 8

 Skeabost_Bridge # town no. 9

 Carr_Bridge # town no. 10

 Dulnain_Bridge # town no. 11

 Gara_Bridge # town no. 12

 Steens_Bridge # town no. 13

 Johnstone_Bridge # town no. 14

 Newnham_Bridge # town no. 15

 Whaley_Bridge # town no. 16

 Mayo_Bridge # town no. 17

 Ettrick_Bridge # town no. 18

 Stamford_Bridge # town no. 19

 Blythe_Bridge # town no. 20

 Pooley_Bridge # town no. 21

 Tummel_Bridge # town no. 22

 Collingham_Bridge # town no. 23

 Whitley_Bridge # town no. 24

 Wootton_Bridge # town no. 25

11:00 - takings so far 0.00

11:05 - takings so far 403.75

11:10 - takings so far 807.50

11:15 - takings so far 1211.25

11:20 - takings so far 1615.00

11:25 - takings so far 2018.75

11:30 - takings so far 2422.50

11:35 - takings so far 2826.25

11:40 - takings so far 3230.00

11:45 - takings so far 3633.75

11:50 - takings so far 4037.50

11:55 - takings so far 4441.25

12:00 - takings so far 4845.00

Learning to Program in Perl 105

11 Lists

In almost every program, you'll require to store a large amount
of information and then look through that data, perhaps manipu-
lating it and processing it on the way. That could be as simple a
task as sorting the lines of a file so that they appear in a different
order, or as looking up a series of towns in our "town" file. But so
far there has been no practical way for us to do this. Of course,
Perl has the answer: The "list".

If you're familiar with other programming languages, you'll prob-
ably be familiar with arrays, which are closely akin to Perl's lists.

11.1 Basics

Creating a list

A list is just that. It's a list of items written between round
brackets and separated by commas. We didn't tell you at the time,
but actually the parameters to your print and printf state-
ments were lists.

print

("There are",$persons," people in the room");

That list is created, used and released within the print
statement.

Let's say, though, that you want to store the elements of the list
under a single name. You could write:
@line =

("There are",$persons," people in the room");

That:

• creates a list (array) called "@line"

• creates three elements within that list

• assigns values to each of the elements

You'll notice:

• there's a single name for the list

• list names start with @ rather than $

• you don't have to state how long the list will be

• you don't have to state how big each element of the list will
be

Referencing an element in a list

Although you refer to the list as a whole using @, you refer to
each individual item using:

• $ first character

• list name

• element number in square brackets

The first element is number zero, so our three-element list
above has element numbers 0 1 and 2.

Figure 56

The @line in use

@line

0 There are

1 24

2 people in the room

Chapter 11 P208

106 Well House Consultants

#!/usr/local/bin/perl

ar1 - first list

$persons = 10 + 2 * 7;

@line = ("There are",$persons," people in the

room");

print "Item 1: ",$line[1],"\n";

print "Item 2: ",$line[2],"\n";

print "Item 0: ",$line[0],"\n";

You can also refer to list elements using an expression to give
the element number. Within double-quoted strings, you can refer-
ence list elements just in the same way that you can access
scalars.

#!/usr/local/bin/perl

ar2 - second list

$persons = 10 + 2 * 7;

@line = ("There are",$persons,

" people in the room");

for ($k = 2; $k>=0; $k--) {

print "Item $k: $line[$k]\n";

}

Changing a list

To change the contents of a list element, just assign a new
value to that element. That's exactly the same thing you would do
with a regular scalar.

Conversion between strings and numbers happens in just the
same way it does with a scalar. The list element grows longer to
cope with longer strings, and gets shorter when you reduce a
string length, just in the same way it does with a scalar.

The same type of flexibility also occurs with extending a list. If
you assign a value to an element beyond the end of a list, the list
will be extended automatically. Any intermediate values that you
don't set will have an undefined value.

seal% ar1

Item 1: 24

Item 2: people in the room

Item 0: There are

seal%

Figure 57

Running Perl program "ar1".

seal% ar2

Item 2: people in the room

Item 1: 24

Item 0: There are

seal%

Figure 58

Running Perl program "ar2".

P208 Lists

Learning to Program in Perl 107

#!/usr/local/bin/perl

linelen - line length counter

print "File to analyse: ";

chop ($fn = <STDIN>);

open (ANALYSE,$fn) ||

die "Can't read file\n";

while ($line = <ANALYSE>) {

 chop $line;

 $nc = length $line;

 $lltab[$nc]++;

 }

close ANALYSE;

for ($k=0;$k<120;$k++)

 {

 next unless ($lltab[$k]);

 printf

 "Line with %3d characters: %3d occurrences\n",

 $k, $lltab[$k];

 }

When the program starts running, the list @lltab does not
exist. It's created when the program reaches line 24 for the first
time. The first of the data file is eight characters long, so the list is
created with nine elements in it (numbered 0 through 8) and the
last element is incremented from an undefined value to a value of
1. The other eight elements remain undefined.

The next time the program reaches line 24, the $nc variable
contains the value 5. So element number 5 of the list is incre-
mented from undefined to 1.

The third time through the loop, $nc contains the value 11 --
past the current end of the list -- so the list is extended.

Since the longest line in the incoming file is 11 characters long,
our list ends up containing 12 elements (numbered 0 to 11) when
the analysis is completed.

The loop to print out the results goes through each element of
the list in turn, reporting the element number and contents where
a value has been stored.

Since we did not keep track of how long our longest line was,
we have put a value high enough for all reasonable circumstances
in the printout loop, but our program will miss reporting of any lines
over that 120 character length.

11.2 The length of a list

Rather setting an artificially high ceiling on an list as we did in
the last section, we have two alternatives:

• we could keep a record of the list length ourselves (messy!)

• we can use a variable that Perl provides for each list

$#listname

seal% linelen

File to analyse: france.txt

Line with 5 characters: 2 occurrences

Line with 8 characters: 2 occurrences

Line with 10 characters: 2 occurrences

Line with 11 characters: 1 occurrences

seal% cat france.txt

Plymouth

Poole

Southampton

Portsmouth

Newhaven

Folkestone

Dover

seal%

Figure 59

Running Perl program "linelen".

Chapter 11 P208

108 Well House Consultants

The $#listname variable tells us the number (often referred
to as the index number or ordinate) of the last element of the list.
So the list in the previous example was 12 elements long which
means
$#lltab ends with a value of11

$#lltab can be used just like any other variable.
The printing loop in our last example may be rewritten from
 for ($k=0;$k<120;$k++)

to
 for ($k=0;$k<=$#lltab;$k++)

And our bug that "lines over 120 characters are not reported"
has been fixed. Furthermore, if all the lines in our file are short, as
in our test case, we're not left looping around many more times
than necessary after all the list contents have been printed.

You'll have noticed the use of the # character, previously used
to indicate the start of a comment, within this special variable. In
detail, a # only indicates the start of a comment where it follows
after a white space character.

11.3 Context

Some operators in Perl can only mean something sensible
when used on a scalar. For example, you can add 5 to a scalar,
but adding 5 to a list would be a meaningless request.

There are other operators we'll meet which would only be
sensible when used on a list. For example, you couldn't sort a
scalar into order but you can sort a list.

And there are some operators which mean different things
when they're used on a scalar to when they're used on a list.

We're introducing the subject of context. Operations in Perl can
be performed in a list or a scalar context. How does Perl know
which to use? If something is valid in a list context, then the list
context meaning takes precedence.

Let's see an example ... first the program which we'll then study
line-by-line.

#!/usr/local/bin/perl

context demonstration

@mylist = ("a","b","c");

@one = @mylist;

$two = @mylist;

(@three) = @mylist;

($four) = @mylist;

print "one ",@one,"\n";

print "two ",$two,"\n";

print "three ",@three,"\n";

print "four ",$four,"\n";

seal% context

one abc

two 3

three abc

four a

seal%

Figure 60

Running Perl program "context".

P208 Lists

Learning to Program in Perl 109

Let's look one-by-one:

@one = @mylist;

List context. The = sign assigns the list on the right to the list
on the left. You are copying the whole list.

 $two = @mylist;

Scalar context. We're assigning to a scalar on the left-hand
side, after all. How does Perl handle @mylist in a scalar
context? It uses the length of the list1 as that's about the most
sensible thing it can do. That's why 3 was printed out.

(@three) = @mylist;

List context. The = sign assigns the list on the right to the list
on the left. You are copying the whole list. The brackets are
redundant.

($four) = @mylist;

List context. Because you have brackets around the scalar on
the left-hand side of the assignment, the left-hand side has
become a list. So this is list context as well. As the list on the left
can only take one value, the first value of @mylist is copied into
$four. That's why a is printed out.

Getting the idea? Let’s try some more:

#!/usr/local/bin/perl

cont2 - context demonstration

@mylist = ("a","b","c");

print "five ",@mylist,"\n";

print "six @mylist\n";

print "seven ",@mylist+0,"\n";

print "eight @mylist+0\n";

Analysed as:

print "five ",@mylist,"\n";

List context. The entire contents of the list are printed out

print "six @mylist\n";

Double-quote context. The entire contents of the list are printed
out, but with a space character between each element (you'll learn
later how to change the separator character)

print "seven ",@mylist+0,"\n";

Scalar context . You can't add 0 to a list, but you can add it to
a scalar. So @mylist was taken as the length of the list. Another
very common use of @mylist in a scalar context is:
 if (@mylist > 20)

print "eight @mylist+0\n";

Double quote context. @mylist is expanded with a space
between each element. In double-quote context, mathematical
expressions aren't interpreted, they're just a part of the text, so the
+0 is printed.

1 one greater than the value of $#mylist

seal% cont2

five abc

six a b c

seven 3

eight a b c+0

seal%

Figure 61

Running Perl program "cont2".

Chapter 11 P208

110 Well House Consultants

11.4 Summary

A list is a number of values, written separated by commas.
Lists may be saved into variables, which have names starting

with @ charcaters rather than $ characters. Individual elements
of the list can be accessed using $list_name[$el_no]

The first element in a list is numbered 0, the second is
numbered 1, and so on. If you refer to a negative number, Perl will
count backwards from the end.

It's important to remember that Perl can work in both a list and
a scalar context, and some operators do different things
depending in which context you call them.
$#list_name always gives you the number of the top

element of list_name. @list_name in a scalar context gives
you the number of elements in the list.

P208 Lists

Learning to Program in Perl 111

Exercise

Rewrite your dice program. This time, store all the values entered in a list, and print out just the average and then
echo back all the numbers that were correctly entered.

Our example answer is dilist

Sample

graham@otter:~/profile/answers_pp> dilist

Value of die 1: 3

Value of die 2: 2

Value of die 3: 4

Value of die 4: 5

average: 3.5

values: 3 2 4 5

graham@otter:~/profile/answers_pp>

Chapter 11 P208

112 Well House Consultants

11.5 Functions that operate on lists

Functions that let you manipulate the elements within a list

push add new element(s) to end of list

pop return last element of list and
remove it from list

shift return first element from list, remove
it, move rest of list up

unshift add new elements(s) to start of list,
move list up

splice remove and return part of a list,
replace with new list

push and pop implement a stack on the end of a
list

shift and unshift implement a stack on the start of a
list

push and shift

(or pop and unshift)can be used to implement a queue

splice is a generic function than can be
used for any of the above, and
more!

Functions that let you re-order a list (returning a new list)

reverse returns a list in the opposite order

sort returns a list sorted lexically

Function to return the length of a list

scalar returns length of a list.

(an alternative to $#xxx and to @xxx in a scalar context)

Operators that relate to lists

<> in a list context, read until end of file into a list

.. generate a list of scalars

$#xx= truncate or extend a list

foreach process each element of a list

qw quote word

Operators than manipulate strings and lists

grep filter a list for all elements matching a regular
expression

join join the elements of a list into a single string

split split a string into a list of fields

pack pack a list into a scalar

unpack unpack a scalar into a list

chomp remove last character in each element of list if
it's end-of-line

P208 Lists

Learning to Program in Perl 113

That's a big list of operators. Let's see some of them in use in
some example programs.

#!/usr/local/bin/perl

fanlist - fan out towns based on vowels in name

open (IN,"towns") ||

die ("No town file to read\n");

chomp(@tlist = <IN>);

@vowels = qw(a e i o u);

foreach $vow(@vowels) {

 foreach $town(@tlist) {

 push @matched_town,$town if (lc($town) =~ /$vow/

);

 }

 print "vowel $vow: matches "

 ,scalar(@matched_town),"\n";

 $#matched_town = -1;

}

• chomp(@tlist = <IN>);

Read from the file, putting each line into the next element of the
list @tlist. Remove the last character off each element if it's a
new-line character (it will be).

• @vowels = qw(a e i o u);

Set up a list called @vowels containing the text strings
"a","e","i","o","u". This is a shorthand -- the statement could just as
easily have been written
@vowels = ("a","e","i","o","u");

• foreach $vow(@vowels) {

Perform the following block with the variable $vow taking each
value from the list @vowels in turn.

You can use any list, not just a single named-list variable, with
a foreach statement. Additionally, all features that you know on
while, until and for loops (next, redo, last) are available
to you.

• push @matched_town,$town

Extend the list @matched_town by one element and save the
contents of the variable $town into that element.

• scalar(@matched_town)

Return the length of the list @matched_town

• $#matched_town = -1;

Reduce the length of the @matched_town list to zero, but
don't actually destroy the list itself.

seal% fanlist

vowel a: matches 2957

vowel e: matches 3123

vowel i: matches 2281

vowel o: matches 2712

vowel u: matches 1082

seal%

Figure 62

Running Perl program "fanlist".

Chapter 11 P208

114 Well House Consultants

Here's another example:

#!/usr/local/bin/perl

booklook

open (BOOX,"books") || die "no book file\n";

chomp (@books = <BOOX>);

@randolph = grep(/Schwartz/,@books);

print "Total count: ",@books+0,"\n";

print "By Schwartz: ",@randolph+0,"\n";

foreach $book(@randolph) {

@fields = split (/\|/,$book);

unshift @isbns,$fields[3];

}

$report = join(", ",@isbns);

print $report,"\n";

• @randolph = grep(/Schwartz/,@books);

Build a list called @randolph which contains all the elements
of @books matching the regular expression /Schwartz/

• print "Total count: ",@books+0,"\n";

• print "By Schwartz: ",@randolph+0,"\n";

Confirms in our example that the original book list contains 20
elements and that the one generated by grep contains 5.

• foreach $book(@randolph) {

Have $book take each value from @randolph in turn.

• @fields = split (/\|/,$book);

Divide the string in $book at vertical bar characters1 and save
each of the resulting fields into the next element of the @fields
list.

• unshift @isbns,$fields[3];

Move all the elements of @isbns up by one and push
$fields[3] into the newly vacated first position.

• $report = join(", ",@isbns);

Joins together all elements of the @isbns list into a single
scalar, placing a ", " separator between each.

11.6 Iterating through a list

You can loop through a list (we're supposed to call them "lists"
these days!) using a foreach loop running a counter, or using the
second form of foreach that doesn't provide a counter.

seal% booklook

Total count: 20

By Schwartz: 5

1-56592-149-6, 1-56592-042-2,

1-56592-284-0, 0-937175-64-1,

1-56592-324-3

seal%

Figure 63

Running Perl program "booklook".

1 the \ protects the | character from the regular expression handler

P208 Lists

Learning to Program in Perl 115

Thus:
#!/usr/bin/perl

@demo1 = (20,30,50,60,80,200);

@demo2 = (40,70,90,40,20,10,0);

foreach ($k=0; $k<@demo1; $k++) {

 $demo1[$k] += 2;

 }

print ("@demo1\n");

foreach $item (@demo2) {

 $item += 3;

 }

print ("@demo2\n");

In the first form, you're providing a counter and know the
element that you're on, thus you could make a change based on
the element number. In the second form, you don't have a
counter;1 however, many folks don't realise that any changes you
make to the "loop variable" are saved back in the list.

In other words, the second form is a very neat way of altering
every element of a list. There is no need to actually know the
element number, which will allow you to simplify code in many (but
not position number-dependent) places.

Note that this trick only works if you specify just an array name
in the foreach statement. If you wrote

 foreach $item(@this,@that)
then changes you make to $item are not reflected back in the
@this and @that lists.

Further note: the words "for" and "foreach" are interchangable,
so you could save four more bytes if you really want.

Another possibility is to use the map function, or keep your own
counter and use the second form of "for".2

!#/usr/bin/perl

@demo1 = (20,30,50,60,80,200);

@demo2 = (40,70,90,40,20,10,0);

@demo1 = map($_+7,@demo1);

print ("@demo1\n");

foreach $item (@demo2) {

 $demo2[$n] += 9;

 $n++;

 }

print ("@demo2\n");

The map function is worthy of further study. Each element of a
list is put into a special variable called $_ in turn. You can then
perform any operation that you wish on that item.

$ perl prog.pl

22 32 52 62 82 202

43 73 93 43 23 13 3

$

Figure 64

Using a foreach loop to run through a counter

1 and, no, there is not one in any special variable that this author knows of
2 I don't know why you would do this

$ prog2.pl

27 37 57 67 87 207

49 79 99 49 29 19 9

$

Figure 65

Using your own counter

Chapter 11 P208

116 Well House Consultants

11.7 List slices

The notation @abc referred to the whole of the list abc, and
the notation $abc[4] referred to the scalar which is element 4
of the list. $#abc referred to the index1 of the last element of the
list abc.

There's one more notation: @abc[4,5] refers to a slice of the
list – elements 4 and 5 in this case. Within the square brackets you
give a list of ordinates.
By the way, $abc would be a separate scalar. It is recom-

mended that you don't use both $abc and @abc in the same
program2 as this could be very confusing when you come to main-
tain your program later. Here's some array slices in use:

#!/usr/local/bin/perl

vgrep - matches word in file;

prints surrounding slice

print "file: ";

chop ($fn = <STDIN>);

open (FI,$fn) || die "Can't read that\n";

@source = <FI>;

@end = @source[-3..-1];

close FI;

print "-------------file

starts\n",@source[0..2];

print "-------------file ends\n",@end;

print "Look for: ";

chop ($look = <STDIN>);

for ($k=0;$k<@source;$k++) {

next unless ($source[$k] =~ /$look/);

$n++ &&

print "==============================\n";

print "from line ",$k+1,"\n";

print @source[(($k>2)?($k-2):0)..($k+2)];

}

• @end = @source[-3..-1];

@end is the last three elements of the @sources list

• print "-------------file

starts\n",@source[0..2];

Printing a slice

• print @source[(($k>2)?($k-2):0)..($k+2)];

More complex specification of a slice!
Five elements of a list -- from $k-2 to $k+2, but taking care

that the calculation $k-2 doesn't give a negative result which
would select the END of the list.

1 ordinate
2 though there will be exceptions

seal% vgrep

file: towns

-------------file starts

International

Canada

USA

-------------file ends

Premium

Product Purchase

Adult Services

Look for: llom

from line 3060

Porthcawl-4-Figs.

Wick-(Mid_Glam)

Millom

Broughton-in-Furness

Ravenglass

==============================

from line 3870

Dolton

Langtree

Sullom_Voe

Brae

Hillswick

==============================

from line 4238

Limpsfield_Chart

Craddock

Cullompton

Tiverton-(Devon)

Bickleigh

seal%

Figure 66

Running Perl program "vgrep".

P208 Lists

Learning to Program in Perl 117

A very common use of slices:
printf

"%s %s %d %.2f %d %d\n" @fields[0,4..6,1,3];

To print out six fields from a record, formatted, and in a different
order to which they are held in the list.

11.8 Anonymous lists

Although we've given names to most of the lists we've used so
far, there are times you may want to use a list within just a single
line, and there's no need to name it.

Here's an example:

#!/usr/local/bin/perl

dow - day of week

print "day No.: ";

$val = <STDIN>%7;

11.9 Summary

Functions that operate on lists include push and pop, shift
and unshift, splice, reverse and sort.
Grep, join, split, pack, unpack and chomp manipulate

strings and lists.
In a list context, <FH> reads the rest of the file open on FH into

a list, one line per list element.
foreach allows you to assign the contents of each element of

a list in turn into a variable.
You may set $#list to elongate or shorten a list, although

Perl normally elongates lists automatically as necessary.
The .. operator allows you to generate a counter list.
You may use list slices using a notation such as
 @list[0,1,4..7]

If you want to use a list at just one place in your program and
don't need to name it, you can use an anonymous list.

seal% dow

day No.: 3

Day 3 is Wed

seal% dow

day No.: 1

Day 1 is Mon

seal% dow

day No.: 7

Day 0 is Sun

seal%

Figure 67

Running Perl program "dow".

$name =

("Sun","Mon","Tue","Wed","Thu","Fri","Sat")[$val];

print "Day $val is $name\n";

You may ask "Why?" We'll be coming back to lists later and you'll
see that anonymous lists are much more than just a curiosity!

Chapter 11 P208

118 Well House Consultants

Exercise

Read the whole of the file access_log supplied in the course profile. Put it into a list, taking care to eliminate the
first line which is in a different format.

• Ask the user to enter a number of host names and report any lines that report "404" in the 9th field of the line for
each host in turn.

Our example answer is web_ac

Modify the application to produce a report that tabulates only date and time, page accessed and return code.

Our example answer is web_ac2

Sample

graham@otter:~/profile/answers_pp> web_ac

hosts of interest? perch plaice

perch - - [12/Nov/1998:05:25:37 -0500]"GET /jrl/applets/search.zip HTTP/1.0" 404 -

plaice - -[11/Nov/1998:06:40:19 -0500]"GET /penguin HTTP/1.0" 404 -

plaice - -[11/Nov/1998:06:40:30 -0500]"GET /penguin/in_work HTTP/1.0" 404 -

plaice - -[11/Nov/1998:06:40:53 -0500]"GET /penguin/in_work/JA HTTP/1.0" 404 -

plaice - -[11/Nov/1998:06:41:19 -0500]"GET /penguin/in_work/JA/JA1.2.traineeware HTTP/1.0" 404 -

plaice - -[11/Nov/1998:06:41:28 -0500]"GET /penguin/in_work/JA/JA1.2.traineeware/folder HTTP/1.0"

404 -

plaice - -[11/Nov/1998:06:41:41 -0500]"GET /penguin/in_work/JA/JA1.2.traineeware/folder/

hawthorn.html HTTP/1.0" 404 -

graham@otter:~/profile/answers_pp>

Sample

graham@otter:~/profile/answers_pp> web_ac2

hosts of interest? perch plaice

Host perch

 [12/Nov/1998:05:25:37 404 /jrl/applets/search.zip

Host plaice

 [11/Nov/1998:06:40:19 404 /penguin

 [11/Nov/1998:06:40:30 404 /penguin/in_work

 [11/Nov/1998:06:40:53 404 /penguin/in_work/JA

 [11/Nov/1998:06:41:19 404 /penguin/in_work/JA/JA1.2.traineeware

 [11/Nov/1998:06:41:28 404 /penguin/in_work/JA/JA1.2.traineeware/folder

 [11/Nov/1998:06:41:41 404 /penguin/in_work/JA/JA1.2.traineeware/folder/hawthorn.html

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 119

12 Subroutines in Perl

12.1 What are subroutines and why?

The limitations of "single block code"

You won't be the first person in the world to want to ...

• read options from the command line

• interpret form input in a CGI script

• pluralize words in English

You won't be the first person in your organisation to want to ...

• output your organisation's copyright statement

• validate an employee code

• automatically contact a resource on your web site

You may need to handle the same data in several programs, or
to handle in your programs the same data that your colleagues
handle in theirs.

And you may want to perform the same series of instructions at
several places within the same program.

With the Perl programs you've written so far, all your code has
been in a single file and indeed has "flowed" from top to bottom.

• You have not been able to call the same code in two different
places

• You have not been able to share code between programs --
copying is not normally an option as it gives maintenance
problems

• You have not used your colleague's code, nor code that's
available for everyone on the CPAN, nor additional code
that's so often needed that it's shipped with the Perl
distribution.

First use of subroutines

The first computer programs were written rather like the ones
that we've written so far. Each one for its own specific task.

In time, programmers (said to be naturally lazy people) noticed
that they could save effort by placing commonly used sections of
code into separate blocks which could be called whenever and
wherever they were needed. Such separate blocks were variously
known as functions, procedures or subroutines. We'll use the word
"subroutine" because Perl does!

Structured programming

The subroutine approach was then taken to extreme so that all
the code was put into separate blocks, each of which could be
described as performing a single task.

For example, the program I run might be described as
performing the task of "reporting on all towns with names matching
a pattern".

Chapter 12 P209

120 Well House Consultants

That single task divides down into separate tasks, each of
which would be a subroutine:

• get the pattern to match

• get the database of towns

• filter out the towns wanted

• report the results

Getting the match pattern divides down into:

• check the command line for a pattern

• read a pattern from STDIN1

and so on!
Even in this simple example, you'll start to discover that there

are tasks that are likely to be shared between different applica-
tions. Also:

• It's easier to identify which block errors are in

• For maintenance, as a task changes, a new version can slot
in easily

• No tasks are too long, so the code is easier to follow

Perl was founded on subroutines and all versions that you'll
come across have full support for structured programming. We'll
encourage you to use at least some of the principles of structured
programming for all the programs you write.

Object oriented programming

Let's go a stage further. What's our program example above
dealing with? Data about something, about an object of some
type. In this case, the objects are towns.

How are we going to store information about a town?

... An array? Something else?

On disk?

In memory??

We could guess at some answers, but if someone else has
already written the code for handling towns, frankly, we'd rather
not be concerned about it. What do we need to be able to do?

• Create a town

• Check a town and see if it matches

and perhaps some other functions later.
Object oriented programs put objects at the centre of the design

model.
The programmer who wishes to make use of objects of a partic-

ular type2 need only know how to access the objects via
subroutines3 and to be able to tell the methods which particular
object of the class to which he is referring. He identifies the partic-
ular object by using an "instance variable".

1 to run if it wasn’t on the command line
2 a particular class in object oriented terms; a particular package or module in

Perl terms
3 methods in object oriented terms

P209 Subroutines in Perl

Learning to Program in Perl 121

In Perl, you've already come across file handles, which are
rather like an instance variable. You create them in your open
call, then use them to say which file in which you're interested. But
the fact remains that you don't know what goes on internally.

When you start using other classes in Perl, you'll discover that
instance variables can be held in scalars, just like any other vari-
able, and passed to methods to indicate which instance.

From version 5.00, Perl has had object oriented capabilities.
Unlike languages such as Java, which force you to use object
oriented techniques and to stick to the rules, Perl assumes you
know what you're doing.

12.2 Calling a subroutine

If you're going to call a subroutine that's already been written,
you need to do two things:

a)Include a use statement in your code, telling the Perl
compiler to pull in the file that contains the subroutine and

b)actually call the subroutine.
Of course, this implies you know which file contains the subrou-

tine you want, what the subroutine does, and how to call it.

12.2.1 Calling subroutines

An example program that shows some first subroutine calls:

#!/usr/local/bin/perl

Sample use of subroutines

use valread;

print "Demonstration program\n";

&stamper;

sleep 2;

stamper();

sleep 2;

stamper;

sysrep;

Explanation:
 use valread;

This requests the compiler to include all the subroutines in a
module called valread (actually a file called valread.pm) and make
them available to the rest of the program.1

This sample program then calls the stamper subroutine three
times:
 &stamper;

The most generic call, just as $ means a scalar variable, so &
means a subroutine. You must provide the & in Perl 4, but using
Perl 5 we usually leave it out:
 stamper();

The brackets indicate that this is a subroutine. If Perl already
knew this, we could leave the brackets out as well:2

C:\graham\wash>perl substamp

Demonstration program

Output written Mon Apr 17 15:38:45 2000

Output written Mon Apr 17 15:38:47 2000

Output written Mon Apr 17 15:38:49 2000

Perl version 5.006 running on MSWin32

C:\graham\wash>

Figure 68

Sample of first subroutine calls

1 In Perl 4 you would require "valread.pm"

Chapter 12 P209

122 Well House Consultants

 stamper;

In our example program, we also called the sysrep subroutine in
the valread module, and we've used the sleep function which is
built into Perl to add some delays.

12.2.2 Passing values out of subroutines

Our first subroutines didn't take any information in from the
calling program, nor pass any information back. Most times,
though, you'll want to have a subroutine give you an answer, or at
the very least tell you that it worked.

Here's a program that calls a subroutine to read a number. The
subroutine does rather more than the <> operator. It checks that
you really have given digits and re-prompts and re-checks if
necessary

#!/usr/local/bin/perl

Sample use of subroutines

use valread;

stamper;

print "please enter a number ";

$yoused = readnumber();

print "You entered $yoused!\n";

12.2.3 Passing values in to subroutines

Can we extend our example so that our subroutine can act on
values passed to it? Yes; all we have to do is specify those values
after the subroutine name in the call:

#!/usr/local/bin/perl

Sample use of subroutines

use valread;

$trainees = readrange("Students booked",0,10);

$duration = readrange("Days long",1,5);

print "A $duration day course with $trainees

students\n";

print $duration*($trainees+1)," lunches\n";

In this example, our readrange subroutine is actually doing quite
a bit of work. It

• Prompts the user

• Reads the reply

• Checks that it's a number and in range

• Re-prompts on error until the user makes a valid entry.

Short program, but very effective.

2 In this example, it knew it was a subroutine because of the use statement

C:\graham\wash>perl subgetnum

Output written Mon Apr 17 15:51:00 2000

please enter a number ten

Number format error. Please retry 10

You entered 10!

C:\graham\wash>

Figure 69

Sample of calling a subroutine to read a number

C:\graham\wash>perl subgnrange

Students booked = eight

Number format error. Please retry 8

Days long = 8

Must be in range 1 to 5 ...

Days long = 5

A 5 day course with 8 students

45 lunches

C:\graham\wash>

Figure 70

Extending the sample subroutine to act on values passed to
it

P209 Subroutines in Perl

Learning to Program in Perl 123

12.3 Writing your own subroutine

There's a wide range of subroutines already available to you -
built in to Perl, provided with the Perl distribution, available from
the CPAN, and perhaps also available from other work that's been
done at your company. But the time will come when you want to
write your own subroutine, placing it within the same file as your
program.

Here's a program which prompts for a player's name and vali-
dates that a single name was entered:

#!/usr/local/bin/perl

calling a subroutine in the same file

announce();

foreach $quadrant("North","West","South","East")

{

 push @names,getplayer($quadrant);

 }

print "Players are @names.";

A comment to separate off subroutines

sub announce {

 $now = localtime();

 print "Bridge game, call for players at $now\n";

 }

sub getplayer {

 $angle = $_[0];

 do {

 $rpt = 0;

 print "Player sitting at $angle is ... ";

 chomp ($response = <STDIN>);

 ($response !~ /^\S+$/) and

 print "One name please\n" and

 $rpt=1;

 }

 while ($rpt);

 return ($response);

 }

You'll notice that we don't have a use statement in our program,
since there is no other file to use; the subroutines are included in-
line further down the file.

The subroutines are called as follows:
 announce();

and

C:\graham\wash>perl mysub

Bridge game, call for players at

Mon Apr 17 17:01:58 2000

Player sitting at North is ...

John

Player sitting at West is ...

Julie

Player sitting at South is ...

Julian Brown

One name please

Player sitting at South is ...

One name please

Player sitting at South is ...

Julian

Player sitting at East is ...

Jenny

Players are John Julie Julian

Jenny.

Figure 71

Prompting for single-word entries, then validating

Chapter 12 P209

124 Well House Consultants

 push @names,getplayer($quadrant);

although it would have been just as effective to write
 $plname = getplayer($quadrant);

 push @names,$plname;

for the second subroutine call.
The subroutines themselves are declared as a separate block,

starting with "sub" and the name and enclosed in curly braces.
Although subroutines can be placed anywhere in the source, it's
usual to place them at either the start or the end of the file, and to
put some sort of bold comment statement to separate them from
the rest of the code.

Subroutine announce doesn't receive any parameters from the
main program, nor does the main program take any notice of what
it passes back, but a parameter is passed in and out, to and from
subroutine getplayer.

12.3.1 Passing parameters in

Parameters are passed into subroutines in a list with a special
name – it's called @_ and it doesn't conform to the usual rules of
variable naming. This name isn't descriptive, so it's usual to copy
the incoming variables into other variables within the subroutine.
Here's what we did at the start of the getplayer subroutine:
 $angle = $_[0];

If multiple parameters are going to be passed, you'll write
something like:
 ($angle,$units) = @_;

Or if a list is passed to a subroutine:
 @pqr = @_;

In each of these examples, you've taken a copy of each of the
incoming parameters; this means that if you alter the value held in
the variable, that will not alter the value of any variable in the
calling code. This copying is a wise thing to do; later on, when
other people use your subroutines, they may get a little annoyed if
you change the value of an incoming variable!

12.3.2 Returning values

Our first example concludes the subroutine with a return
statement:
 return ($response);

which very clearly states that the value of $response is to
returned as the result of running the subroutine.

Note that if you execute a return statement earlier in your
subroutine, the rest of the code in the subroutine will be skipped
over. For example:
 sub flines {

 $fnrd = $_[0];

 open (FH,$fnrd) or return (-1);

 @tda = <FH>;

 close FH;

 return (scalar (@tda));

 }

will return a -1 value if the file requested couldn't be opened for

P209 Subroutines in Perl

Learning to Program in Perl 125

read, otherwise the file will be read and the number of lines read
passed back as the returned value.

You may often see Perl subroutines that don't end with a
return statement. Is anything passed back? Yes, Perl always
returns something; if there's no explicit return statement, it
passed back the result of the last operation in the subroutine!
Frequently you'll see a subroutine concluding:
 $response;

 }

or even
 <STDIN>;

 }

or
 1;

 }

12.4 Writing subroutines in a separate file

Subroutines are often reused between programs. You really
won't want to rewrite the same code many times, and you'll
certainly not want to have to maintain the same thing many times
over.

Plan of action:
a) Place the subroutines in a separate file, using a file exten-

sion .pm

b) Add a use statement at the top of your main program, calling
in that file of subroutines

c)Add a 1; at the end of the file of subroutines. This is neces-
sary since use executes any code that's not included in
subroutine blocks as the file is loaded, and that code must return
a true value – a safety feature to prevent people use-ing files that
weren't designed to be use-ed.

main program (file ms2):

#!/usr/local/bin/perl

calling subroutines in a different file

use bridges;

announce();

foreach $quadrant("North","West","South","East")

{

 push @names,getplayer($quadrant);

 }

print "Player's names are @names.";

C:\graham\wash>perl ms2

Bridge game (2), call for players

at Mon Apr 17 18:06:40 2000

Player sitting at North is ...

David

Player sitting at West is ...

Celine

Player sitting at South is ...

Bernice

Player sitting at East is ...

Albert

Player's names are David Celine

Bernice Albert.

C:\graham\wash>

Figure 72

Prompting for single-word entries, then validating

Chapter 12 P209

126 Well House Consultants

Subroutines in file bridges.pm:

Perl "use"d file bridges.pm

sub announce {

 $now = localtime();

 print "Bridge game (2), call for players at $now\n";

 }

sub getplayer {

 $angle = $_[0];

 do {

 $rpt = 0;

 print "Player sitting at $angle is ... ";

 chomp ($response = <STDIN>);

 ($response !~ /^\S+$/) and

 print "One name please\n" and

 $rpt=1;

 }

 while ($rpt);

 return ($response);

 }

1;

P209 Subroutines in Perl

Learning to Program in Perl 127

12.5 Scope

Although we've been passing variables around between
subroutine in Perl, you don't always need to; you might take
advantage of the fact that (by default) variables are shared
between subroutines.

12.5.1 Global Scope

 In this example, both $k and @vals are used in both the
subroutine and the main program:

#!/usr/local/bin/perl

variables are global by default

sub getvals {

 for ($k=0;$k<5;$k++) {

 print "Enter value ",$k+1,": ";

 chomp ($vals[$k] = <STDIN>);

 }

 }

###

print ($k = "=======================","\n");

getvals();

print "values: @vals\n";

print $k,"\n";

We've made use of the global nature of the list called @vals
by printing it out in the main code, but we were hoping that printing
out $k would give another row of = signs. It didn’t. It gave the
value 5 since the variable $k is also used in the subroutine.

C:\graham\wash>perl globvar

=======================

Enter value 1: 4

Enter value 2: 6

Enter value 3: 4

Enter value 4: 3

Enter value 5: 6

values: 4 6 4 3 6

5

C:\graham\wash>

Figure 73

Prompting for single-number entries, then validating

Chapter 12 P209

128 Well House Consultants

12.5.2 my variables

It wouldn't be practical to share subroutines between as many
programs if variables were all global. There would be long lists of
banned variable names supplied with each module file, and occa-
sions when you couldn't use two modules that you wanted
because they both happened to use the same variable internally.

To prevent variables that you use within subroutines being
visible outside, declare them as being my variables. A my variable
is created afresh each time that the declaration is encountered,
and the my variable is discarded when the program execution
reaches the end of the block on which the variable was declared.

Thus, we could correct our previous example as follows:

#!/usr/local/bin/perl

variables are global by default - use of my

sub getvals {

 my $k;

 for ($k=0;$k<5;$k++) {

 print "Enter value ",$k+1,": ";

 chomp ($vals[$k] = <STDIN>);

 }

 }

###

print ($k = "=======================","\n");

getvals();

print "values: @vals\n";

print $k,"\n";

The solution is good, though the author of the subroutines
needs to be well disciplined to ensure that a my declaration is used
for every variable that's to be localised. In practice, it's very easy
for a programmer to make an error and leave out a few mys.
Perhaps no great harm is done at first, but later on as others use
the subroutines it's likely that one of the missing my statements will
cause a variable conflict.

A module called strict is provided with the Perl distribution itself.
If you use strict; you are asking the compiler to be strict with
you and reject any variables that are not declared my. Most
authorities will tell you that you should always
 use strict;

if you're writing files of subroutines.

C:\graham\wash>perl myvar

=======================

Enter value 1: 5

Enter value 2: 3

Enter value 3: 4

Enter value 4: 7

Enter value 5: 8

values: 5 3 4 7 8

=======================

C:\graham\wash>

Figure 74

Correcting a prior mistake by declaring a my variable

P209 Subroutines in Perl

Learning to Program in Perl 129

We started this module by showing you how to call subroutines
provided by others using a file called valread.pm. This file contains
examples of strict, my, parameter passing and return – a
good revision of the subjects we have covered so far in this
module.

File of subroutines - module P209

use strict;

sub stamper {

 my $now = localtime();

 print "Output written $now\n";

 }

sub sysrep {

 print "Perl version $] running on $^O\n";

 }

sub readnumber {

 my $input = <STDIN>;

 while ($input !~ /^\s*[-+]?\d*\.?\d*\s*$/ or

 $input !~ /\d/) {

 print "Number format error. Please retry ";

 $input = <STDIN>;

 }

 $input+0;

 }

sub readrange {

 my ($prompt,$low,$high) = @_;

 die "readrange - wrong number of parameters\n"

 if ($#_ != 2);

 print $prompt," = ";

 my $given = readnumber();

 while ($given < $low or $given > $high) {

 print "Must be in range $low to $high ...\n$prompt = ";

 $given = readnumber();

 }

 $given;

 }

1;

Chapter 12 P209

130 Well House Consultants

Exercise

1. Write a subroutine that will calculate the hypotenuse of a triangle. Here's an example of how you would call it:
 $h = hypot(5,12);

and the result to be returned into $h is the square root of the sum of the squares of the two parameters (using
Pythagoras's theorum).

Write a test program in the same file as the subroutine to test it. Make two calls to the subroutine, using 5,12 and
4,5 as the parameters. Check that the results you get back are as follows:

 "answers are 13 and 6.40312423743285"

Our example answer is py

 Place your hypot subroutine in a separate file, and have Perl load that file into your test code at run time, via a use
statement.

Our example answer is py2

P209 Subroutines in Perl

Learning to Program in Perl 131

12.6 packages

The subroutines that we've studied so far in this module have
all operated well in isolation from one another, and there are times
where the facilities provided are all we need.

There are, though, many times that you'll want information to be
retained from one call to a subroutine to another call to the same
subroutine, or from a call to one subroutine through to a call to
another subroutine.

Here's an example:

#!/usr/local/bin/perl

using a module to retain information

use mailfilter;

mf_init("inbox");

$count = 0;

while ($fromline = mf_get()) {

 print $fromline;

 $count++;

 }

print "total of $count emails\n";

We can't use only my variables within the subroutines in the
mailfilter modules since each call to mf_get relies on the effect of
previous calls to mf_get and/or mf_init.

We couldn't use truly global variables in the calling program or
in other modules in case such variables conflicted with variables.

In fact, variables in Perl are not truly global. Each variable
belongs to a package. Subroutines are a special type of variable,
and they belong to packages too.

By default, variables belong to package main. Package state-
ments may be used to switch the current package; the package
statement stays in force from where it is placed to the end of the
current block, or to the end of the current file of subroutines, or
until it is over-ridden.

Individual variables may be referenced within a different
package to the current package by qualifying the variable name
with the package name followed by ::. For example:
$count in package mailfilter is $mailfilter::count

C:\graham\wash>perl maillister

Subject: Re: Coffee, mobile

phones, etc

Subject: Java course - timing and

text of proposal

Subject: Hi there!

Subject: US contact point

Subject: RE: Java, September

Subject: hello

Subject: whtas been going on?

Subject: hello

Subject: PASS MCSE

total of 9 emails

C:\graham\wash>

Figure 75

Information retained from one call to a subroutine to
another call to a subroutine

Chapter 12 P209

132 Well House Consultants

To show you how this works, here's the mailfilter.pm module
that we called from our program earlier in this section:

mailfilter - reads a pure text mailbox and

returns subjects one by one

package mailfilter;

sub main::mf_init{

 my $filename = $_[0];

 open (FH,$filename) or die "No mail file $filename\n";

 my $strh = <FH>;

 $count = 1;

 }

sub main::mf_get {

 my $retline,$nextline;

 $count++;

 while ($nextline = <FH>) {

 last if ($nextline =~ /^\+OK/i);

 $count++;

 $retline = $nextline if ($nextline =~ /^Subject:/i);

 }

 $retline =~ s/^Subject:\s+/Subject: /i;

 $retline;

 }

1;

Although we've still used a number of my variables, the
following variables are global through the package:
 FH

 $count

and the following subroutine names have been forced into the
main package (or namespace):
 mf_init

 mf_get

Much better, but still not perfect. What would happen if two
modules both contained subroutines called mf_init?

It's best practice to include the subroutine names within the
package name space. The only reason we didn't do so earlier was
so that we could show you how to call packages without having to
start with a long explanation.

P209 Subroutines in Perl

Learning to Program in Perl 133

Here's that last example, rewritten using that best practice and
now printing out the number of lines in the email box as well as the
number of emails, both using a variable called $count.

#!/usr/local/bin/perl

using a module to retain information

use mf2;

mf2::init("inbox");

$count = 0;

while ($fromline = mf2::get()) {

 print $fromline;

 $count++;

 }

print "total of $count emails\n";

print "total of $mf2::count lines\n";

mailfilter - reads a pure text mailbox and

returns

subjects one by one

package mf2;

sub init{

 my $filename = $_[0];

 open (FH,$filename) or die "No mail file

$filename\n";

 my $strh = <FH>;

 $count = 1;

 }

sub get {

 my $retline,$nextline;

 $count++;

 while ($nextline = <FH>) {

 last if ($nextline =~ /^\+OK/i);

 $count++;

 $retline = $nextline if ($nextline

=~ /^Subject:/i);

 }

 $retline =~ s/^Subject:\s+/Subject: /i;

 $retline;

 }

1;

C:\graham\wash>perl maillister

Subject: Re: Coffee, mobile

phones, etc

Subject: Java course - timing and

text of proposal

Subject: Hi there!

Subject: US contact point

Subject: RE: Java, September

Subject: hello

Subject: whtas been going on?

Subject: hello

Subject: PASS MCSE

total of 9 emails

total of 896 lines

Figure 76

Using best practice

Chapter 12 P209

134 Well House Consultants

12.7 Calling objects

You've just seen how we can place a lot of data and subroutines
relating to one particular topic, in this case emails, into a single
package. You probably noticed how the author of the main
program now need only be aware of how to call the subroutines,
and need not concern himself with internal variables. Good news,
since it allows the subroutines to be looked after by one
programmer, and the main program by another.

Let's see if we can take this further.
Imagine that you want to write a whole series of programs that

each analyses multiple emails. What shall we do as the applica-
tion programmer?

Firstly, we'll want to read all the emails. We don't care how
they're stored internally, we just want to have a reference to them
(rather like with a file handle, where we don't want to know which
particular sectors and blocks of our disk drive are involved!).

Then we'll step through each of the emails in turn finding the
date stamp and subject, and listing them out.

All the while, as the application programmer, not knowing the
format of the email files themselves!

#!/usr/local/bin/perl

Towards object orientation!

use email;

while ($mailref = email::new("email","inbox")) {

 push @mailq,$mailref;

 }

foreach $letter(@mailq) {

 $da = email::get($letter,"date");

 $su = email::get($letter,"subject");

 printf ("%-32.32s %s\n",$da,$su);

 }

C:\graham\wash>perl mc

Mon, 17 Apr 2000 11:43:33 +0100 Re: Coffee, mobile phones, etc

Mon, 17 Apr 2000 10:45:13 +0100 Java course - timing and text

of proposal

16 Apr 00 6:36:47 PM Hi there!

Mon, 17 Apr 2000 11:01:51 +0100 Re: US contact point

Mon, 17 Apr 2000 10:38:05 +0100 RE: Java, September

16 Apr 00 5:34:00 PM hello

16 Apr 00 6:37:03 PM whtas been going on?

16 Apr 00 5:33:59 PM hello

Mon, 17 Apr 2000 00:08:41 +0800 PASS MCSE

C:\graham\wash>

Figure 77

Listing out emails

P209 Subroutines in Perl

Learning to Program in Perl 135

This code does indeed do the trick. It calls the new subroutine
in the email package and gets some sort of reference (!) back.
These references are stored in a list until there are no more of
them available.

Each of the references is then passed to another subroutine in
the email package which extracts and returns the appropriate
parameter.

The author of the code above is totally unaware of how the data
is being stored internally, but the program works:

Our requirement so far has been fulfilled, but we've repeated
the package name email numerous times. It turns out that Perl
knows when a reference points to a thing (an object) of type
email, and so we can simplify our coding somewhat. Note that
we're not doing this just out of laziness; there's no reason why we
couldn't have a list containing a mixture of emails and postallet-
ters, and the new notation will let us dynamically call the
appropriate get subroutine within our reporting loop.

#!/usr/local/bin/perl

Towards object orientation!

use email;

while ($mailref = new email("inbox")) {

 push @mailq,$mailref;

 }

foreach $letter(@mailq) {

 $da = $letter -> get("date");

 $su = $letter -> get("subject");

 printf ("%-32.32s %s\n",$da,$su);

 }

Object orientation has a whole language to itself, but we've tried
to steer clear of all the jargon in this section. As you progress,
though, you'll want to know that:

a class is a package
a methodis a subroutine

andan instanceis a reference
And, yes, Perl does support polymorphism, nested multiple

level inheritance, and most of the other things that those of you
experienced in OO techniques will be asking about. It turns out
that Perl's OO model is much more flexible than the OO model
used in many other languages, but then this is Perl, so you won't
be surprised!

Chapter 12 P209

136 Well House Consultants

12.8 Writing a class – an introduction

Many Perl users use a considerable number of classes that
have been written by others before they start writing their own.
Many of the standard modules that are provided with Perl use the
object oriented approach, and many of the modules available on
the CPAN also do so.

In order to complete the last example, we've added a listing of
the email.pm module onto the end of this section of the course.

email - reads a pure text mailbox and returns

email object references one by one

package email;

$firstcall = 1;

sub new{

 my ($class, $filename) = @_;

 if ($firstcall) {

 open (FH,$filename) or die "No mail file $filename\n";

 $firstcall = 0;

 my $strh = <FH>;

 }

 my @thismail;

 while ($nextline = <FH>) {

 last if ($nextline =~ /^\+OK/i);

 push @thismail,$nextline;

 }

 (@thismail == 0) and return (0);

 bless \@thismail,$class;

 }

sub get {

 my ($inst,$what) = @_;

 foreach $line(@$inst){

 if ($line =~ /^$what:/i) {

 $line =~ s/^\S+\s+//;

 $line =~ s/\s*$//;

 return $line;

 }

 }

 return (0);

 }

1;

Learning to Program in Perl 137

13 Special Variables

You'll recall how parameters to subroutines are passed in using
the list @_.
@_ is just the first example of a whole range of special variables

that Perl provides for you.

13.1 The Command line

If you use your computer's operating system from the command
line, how many commands do you know that never take parame-
ters? And, yes, I mean NEVER. Very few. On Linux, perhaps just
pwd and logout.

And yet your programs so far haven't been able to read from the
command line.

Command line parameters

All the parameters from the command line actually are easily
available to you. They're in a list called @ARGV. You can, of course,
find out how many parameters there are using $#ARGV.

#!/usr/local/bin/perl

clp - command line parameters

for ($k=0;$k<=$#ARGV;$k++) {

 print "Parameter :",$k+1," value $ARGV[$k]\n";

 }

print "total of ",$#ARGV+1," parameters\n";

You'll notice how it's very often the calling program (the shell)
that expands metacharacters such as * and ?, so that there was
no need for our program to do so. Of course, had we wanted to
expand such things within Perl, there are two different ways.

The name of your program.

Your program can find its own name using the variable $0
which, like @ARGV, is always there for the referencing.

#!/usr/local/bin/perl

myname - print program name

print "This program is $0\n";

As we carry on through this section,
you'll learn of many more variables with
short, obscure names.

In case you prefer to use longer names, a Perl module is
provided. If you
 use English;

at the top of your code, you'll be able to map all the very short vari-

seal% clp

total of 0 parameters

seal% clp -v test.txt

Parameter :1 value -v

Parameter :2 value test.txt

total of 2 parameters

seal% clp tel*

Parameter :1 value tel2

Parameter :2 value tel3

Parameter :3 value tel4

Parameter :4 value telegram

total of 4 parameters

seal%

Figure 78

Running Perl program "clp".

seal% myname

This program is myname

seal% /extra/disc0.slice7/perl/profile/book/myname

This program is /extra/disc0.slice7/perl/profile/

book/myname

seal%

Figure 79

Running Perl program "myname".

Chapter 13 P210

138 Well House Consultants

able names onto longer ones. $0 becomes
 $PROGRAM_NAME

So:

#!/usr/local/bin/perl

myname2 - print program name

use English;

print "This program is $PROGRAM_NAME\n";

Throughout this section, we'll use the short default names for
special variables, but we'll include the alternative(s) in brackets
after each as we first introduce it.

13.2 Information variables

$0 (or $PROGRAM_NAME) was an information variable. You can
make use of it, but you would not normally change it. There are a
number of other information variables that you might wish to use.

#!/usr/local/bin/perl

info - special information variables

print "please enter data ";

$b = <STDIN>;

open(FH,"hgsaghsadghj");

print "Input line number: $.\n";

 # $INPUT_LINE_NUMBER or $NR

print "Latest Error: $! or ",$!+0,"\n";

$OS_ERROR or $ERROR

print "Process ID: $$\n";

$PROCESS_ID or $PID

print "Real User ID: $<\n";

$REAL_USER_ID or $UID

print "Effective User ID: $>\n";

 # $EFFECTIVE_USER_ID or $EUID

print "Real Group ID: $(\n";

 # $REAL_GROUP_ID or $GID

print "Effective Group ID: $)\n";

 # $EFFECTIVE_GROUP_ID or $EGID

print "Perl Version: $]\n";

 # $PERL_VERSION

print "Operating System: $^O\n";

 # $OSNAME

print "Script Start time: $^T\n";

 # $BASETIME

print "Program Name $0\n";

$PROGRAM_NAME

print "Executable Name $^X\n";

 # $EXECUTABLE_NAME

seal% myname2

This program is myname2

seal% ./myname2

This program is ./myname2

seal%

Figure 80

Running Perl program "myname2".

seal% ./info

please enter data asdasd

Input line number: 1

Latest Error: No such file or

 directory or 2

Process ID: 10772

Real User ID: 2000

Effective User ID: 2000

Real Group ID: 1999 14 1999

Effective Group ID:1999 14 1999

Perl Version: 5.003

Operating System: solaris

Script Start time: 917035598

Program Name ./info

Executable Name /usr/local/bin/

perl

seal%

Figure 81

Running Perl program "info".

P210 Special Variables

Learning to Program in Perl 139

Some of the fields in this report are system dependent, so it'll
look rather different on "coypu" -- our Microsoft Windows System.

Example - use of the $^O variable

Although Perl originated in the Unix world, these days many of
our users are running on Linux, Mac, or Microsoft based windows
systems, and the use of Perl has grown as employers want their
staff to use a language which can easily be ported.

One of the specific "issues" that arises with code that is to be
portable is how to terminate your program. On a Linux or Unix
system, simply dropping out of the end of the script is fine, as your
output is left displayed on your window. Unfortuanatly, when you
drop out of the bottom of your Perl program on a Windows system,
the operating system closes the window for you automatically and
you results will disappear before you have a chance to read them.
By adding

$^O =~ /^MS/ and <STDIN>;

to the end of your program, you'll cause you program to pause
when run on Windows to wait for the user to press the [Enter] key
before the window is removed ... but there won't be any need for
the user to do this on Linux.

13.3 Behaviour changing variables

The variables in this section all start with default values which
can be examined. However, these variables can be changed, and
changing them will affect the subsequent operation of certain
features of Perl.

Format control

Let's take $" (or $LIST_SEPARATOR) as an example. This
variable controls the string that is placed between each element of
a list as the list is expanded within double quotes.

You may recall earlier in the course that expanding a list within
double quotes put a space between each element. That's because
$" defaults to a single space.

#!/usr/local/bin/perl

list_sep - demo of $"

@sample = (1,2,"three",4);

prs("default");

$" = ", ";

prs("comma-space");

$" = "";

prs("empty");

$" = "\n";

prs("newline");

###########################

C:\perlcourse>perl a:info

please enter data dffgdfgdfgfgd

Input line number: 1

Latest Error: No such file

or directory or 2

Process ID: -254985

Real User ID: 0

Effective User ID: 0

Real Group ID: 0

Effective Group ID: 0

Perl Version: 5.00502

Operating System: MSWin32

Script Start time: 917040048

Program Name a:info

Executable Name

C:\PERL\BIN\PERL.EXE

C:\perlcourse>

Figure 82

Running Perl program "info" on "coypu".

seal% list_sep

default: 1 2 three 4

comma-space: 1, 2, three, 4

empty: 12three4

newline: 1

2

three

4

seal%

Figure 83

Running Perl program "myname2".

Chapter 13 P210

140 Well House Consultants

sub prs {

print "$_[0]: @sample \n";

}

$, (or $OFS or $OUTPUT_FIELD_SEPARATOR) affects the
expansion of strings, but this time in the print statement. It spec-
ifies the string that's output between each element of print's list.

#!/usr/local/bin/perl

print_sep - demo of $,

@sample = (1,2,"three",4);

prs("default");

$, = " ";

prs("space");

$, = ", ";

prs("comma-space");

$, = "\n";

prs("newline");

###########################

sub prs {

print "$_[0]: ",$sample[0],@sample[1..3],"\n";

}

$\ (or $ORS or $OUTPUT_RECORD_SEPARATOR) lets you set a
delimiter to be output at the end of each print statement.
Normally, this variable is empty and you use and explicit \n on
each print statement.

Variables that control input

Remember:
 $abc = <STDIN>

reads from STDIN up to and including a new-line character. What
is a new-line character for these purposes? It's the character
defined in $/ (or $RS or $INPUT_RECORD_SEPARATOR), and it
can even be a string of characters for systems with multiline sepa-
rators. Two special cases:

undef $/;will cause the whole input to read as 1 record

$/ = "";will delimit at each blank line (paragraph mode)

Variables that control buffering

Under normal circumstances, your computer collects informa-
tion you print into buffers, and then actually outputs the buffer
when it gets a certain amount of data in it. That's much more effi-
cient that outputting character-by-character, or after each print
statement.

seal% print_sep

default: 12three4

space: 1 2 three 4

comma-space: , 1, 2, three, 4,

newline:

1

2

three

4

seal%

Figure 84

Running Perl program "print_sep".

P210 Special Variables

Learning to Program in Perl 141

Perl uses this behaviour, and unless you take alternative
actions, output will actually be sent:

• When a new-line character is encountered in the output stream
or

• When the output is to STDOUT and a <STDIN> is encountered
(so that you have the request for input visible when you type)

By changing $| (or $OUTPUT_AUTOFLUSH) to a non-zero
value, you change Perl's behaviour so that the buffer is sent at the
end of each print statement. Uses of this include:

• Stay-alive web pages from CGI scripts

• "I'm working" "..." indicators from a heavy program

• Interaction with other processes via pipes

• Interaction with other computers via sockets

This example looks the same in the book, but when you run it

• the first line of dots comes out one-per-second

• the second line, after a LONG pause, appears all at once!

#!/usr/local/bin/perl

buffer - show buffering

$|=1;

dot();

$|=0;

dot();

sub dot {

 foreach $k(1..15) {

 sleep 1;

 print ".";

 }

 print "\n";

 }

13.4 The default input and pattern match space

Let's look at the way we work. We take on a project and we
work at that project to the exclusion of other projects we have
rather than jumping around doing one task on each project. We do
all of the washing up, then all of the ironing, rather than alternately
washing a plate and ironing a shirt.

Programming's a bit the same.
You'll read something into a variable, chop it, check that it's not

a comment, make some changes to it, then print it out. Let's see a
program that does that:

seal% buffer

...............

...............

seal%

Figure 85

Running Perl program "buffer".

Chapter 13 P210

142 Well House Consultants

#!/usr/local/bin/perl

capital - make all upper case

$\="\n";

while ($line = <STDIN>) {

 chop $line;

 next if ($line =~ /^\s*#/);

 $line =~ tr/a-z/A-Z/;

 print $line;

}

What a lot of references to $line -- but there don't need to be!
Many Perl functions assume you're using the variable $_ (or

$ARG 1) if you don't tell them what to work on. Here's that same
program, but using $_.

#!/usr/local/bin/perl

cap2 - make all upper case

$\="\n";

while (<>) {

 chop ;

 next if (/^\s*#/);

 tr/a-z/A-Z/;

 print ;

}

Where is $_ used? Many MANY places! In this example:

• It's where information read from a file handle is placed if (and
ONLY if) it’s the sole item in a while condition

• chop assumes you mean $_ if you don't tell it

• Regular expressions match to $_ if there's no =~ present

• tr 2 defaults to work on $_

• Even print without any list prints ... $_!

So for the uninitiated, we have a series of apparently isolated
lines passing information from one to the next to the next. Of
course, you know that the answer is "$_".

As we come to tr, and s, we'll see $_ appear again.

Reading from <>

If no parameters are given on the command line, <>3 reads
from STDIN.

If parameters are given on the command line, <> reads all the
lines from each file in turn, returning an end of file upon completion
of reading the last file.

seal% capital < sweden.txt

HARWICH

HULL

NEWCASTLE

seal%

Figure 86

Running Perl program "capital".

1 not to be confused with @ARGV

seal% cap2 < sweden.txt

HARWICH

HULL

NEWCASTLE

seal%

Figure 87

Running Perl program "cap2".

2 we come to that later
3 < > is different to <STDIN>

P210 Special Variables

Learning to Program in Perl 143

13.5 More options on Perl's command line

Recall so far:

-c compile only

-w give warning messages

-v give version number of Perl

Let's now add:

-n add a while loop, reading from <> into $_ around
your code

-p as -n, but the loop also includes a print statement.

So here's a diagram of those parts of the last program we can
replace with a -p on the command line:

#!/usr/local/bin/perl

cap2 - make all upper case

$\="\n";

while (<>) {

 chop ;

 next if (/^\s*#/);

 tr/a-z/A-Z/;

 print ;

}

So the program could become:

#!/usr/local/bin/perl -p

cap3 - make all upper case

tr/a-z/A-Z/;

13.6 Others

There are a number of special variables associated with the
handling of regular expressions, which we'll look at when we come
back to that topic.

There is also a group that concerns formatted printing (whole-
page-at-a-time stuff; the sort of thing you would do with pre-printed
stationary) which we cover only briefly towards the end of this
course.

seal% cap3 < sweden.txt

HARWICH

HULL

NEWCASTLE

seal%

Figure 88

Running Perl program "cap3".

Chapter 13 P210

144 Well House Consultants

13.7 Summary

Perl provides you with many built-in variables that you can use
as needed. Many are known by very terse combinations, and use
English; can be used to provide additional, more understand-
able names.

Amongst the special variables:

@ARGV contains the command line
parameters

$0 or $PROGRAM_NAME the name of your program

$^O or $OSNAME the operating system name

Some special variable effect behaviour:

$" changes the separator for ".." expansion

$/ changes the input line delimiter

$| turns buffering off and on

$_ or $ARG is used in many places as the default variable for
input, pattern matching and printing if you don't specify a variable
explicitly.
<> reads from files named on the command line, or if there are

no files named on the command line, it reads from STDIN.
Command-line options -n and -p can be used to wrap your

whole program in an implicit loop (-p prints out $_ each time) and
are useful if you want to run something on every line of a file.

Exercise

Write a one-liner to print all lines containing the string "cliad" from the file "access_log" (specify the file name on
the command line)

Our example answer is clfind

Sample

graham@otter:~/profile/answers_pp> clfind access_log

o_whelk - -[23/Jul/1998:05:25:25 -0400] "GET /pub/graham/cliad.html HTTP/1.0" 200 323

sardine - -[23/Jul/1998:05:41:05 -0400] "GET /pub/graham/cliad.html HTTP/1.0" 200 323

mussel - - [23/Jul/1998:05:41:13 -0400] "GET /pub/graham/cliad.html HTTP/1.0" 200 323

skate - - [10/Sep/1998:05:03:03 -0400] "GET /pub/graham/cliad.html HTTP/1.0" 200 323

whale - - [10/Sep/1998:05:03:14 -0400] "GET /pub/graham/cliad.html HTTP/1.0" 200 323

trout - - [10/Dec/1998:11:50:33 -0500] "GET /pub/graham/cliad.html HTTP/1.0" 200 323

seal - - [28/Jan/1999:12:38:09 +0000] "GET /pub/graham/cliad.html HTTP/1.0" 200 323

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 145

14 Hashes

Hashes are also known as associative arrays. We'll use the
word "hashes" in this course, just as we used the word "lists" in
preference to arrays in an earlier section.

Hashes are like lists except that you don't start counting the
elements at 0 and go on up from there. Instead of numbers for the
indexes (also known as the keys), you can use any unique value,
usually a string. In other words, they're ideal for storing any table
of information where you aren't concerned by the line numbers.

Here’s a file of data that matches a description:
Dover Calais, Oostende

Folkestone Bologne

Newhaven Dieppe

Portsmouth Caen, Le Havre, Cherbourg

Poole Cherbourg

Plymouth Roscoff

The questions asked might include:

• Where can I travel to from Dover?

• Which ports are in your list?

but would NOT include:

• What's the third port in your list?

14.1 Setting up a hash

Just as you can build up a list element-by-element, so you can
build up a hash element by element.

The first time you refer to the hash, Perl creates the structure of
the hash. When you write a new element, it is create. And when
you write an element with an existing name, the old contents are
lost.

Elements in hashes can contain anything a scalar can contain,
including numbers, strings and instance variables, and can
expand and contract in size as necessary to accommodate the
data you save in them.

The difference as you create an element in a hash is:

1. You refer to key (index) in {}s rather than in []s

(That's how Perl knows you want a hash)

and of course

2. The key you give will probably be a string

This is how we set up a hash for the data file above:

open (CH,"channel") || die "No channel file\n";

while ($line = <CH>) {

 ($uk,$france) = split(/\s+/,$line,2);

 $port{$uk} = $france;

 }

Chapter 14 P211

146 Well House Consultants

14.2 Accessing a hash

Individual elements

We can now look up an element of the hash by using its key; if
we try to look up an element that's not defined, we'll get a false
value returned.

while (1) {

 print "Port of interest: ";

 chop ($poi = <STDIN>);

 last unless ($poi);

 if ($port{$poi}) {

 print "Travel to $port{$poi}";

 } else {

 print "Don't know that one\n";

 }

 }

The whole hash

Just as you referred to the whole of a list using a special char-
acter -- an @ -- you refer to the whole of a hash using a %.

You can set up a complete hash from a list, specifying alternate
elements, passing the whole of a hash to a subroutine, etc, this
way.

If you refer to a hash in a scalar context, you are returned some
internal information about the storage used by the hash.

If you refer to a hash in a list context, you are returned alternate
elements of the hash. The elements will not appear to be in any
particular order. You'll look and scratch your head and ask "why?"

#!/usr/local/bin/perl

niports - set up a hash

%port =

("Campbeltown","Ballycastle","Cairnryan",

 "Belfast",

 "Stranraer","Larne","Liverpool","Belfast");

portid(%port);

print "Port hash:\n",%port,"\n";

$stats = %port;

print "Statistics: $stats \n";

@plist = %port;

for ($k=0;$k<$#plist;$k+=2) {

 print $plist[$k]," ",$plist[$k+1],"\n";

 }

###

seal% ukports

Port of interest: Portsmouth

Travel to Caen, Le Havre, Cherbourg

Port of interest: Portsfoot

Don't know that one

Port of interest: Dover

Travel to Calais, Oostende

Port of interest:

seal%

Figure 89

Running Perl program "ukports".

seal% niports

Port of interest: Liverpool

Travel to Belfast

Port of interest:

Port hash:

StranraerLarneLiverpoolBelfast

 CampbeltownBallycastle

 CairnryanBelfast

Statistics: 3/8

Stranraer Larne

Liverpool Belfast

Campbeltown Ballycastle

Cairnryan Belfast

seal%

Figure 90

Running Perl program "niports".

P211 Hashes

Learning to Program in Perl 147

sub portid {

 my %from = @_;

 my $poi;

 while (1) {

 print "Port of interest: ";

 chop ($poi = <STDIN>);

 last unless ($poi);

 if ($from{$poi}) {

 print "Travel to $from{$poi}\n";

 } else {

 print "Don't know that one\n";

 }

 }

}

In the initial setup in this example, where we assigned a list of
constants to a hash, it can become hard to see which values are
the keys and which are the contents of the hash.

An alternative notation: in Perl 5, you can rewrite:
%port =

("Campbeltown","Ballycastle","Cairnryan",

"Belfast","Stranraer","Larne","Liverpool",

"Belfast");

as
%port =

("Campbeltown"=>"Ballycastle","Cairnryan"=>

"Belfast","Stranraer"=>"Larne","Liverpool"=>

"Belfast");

Do be aware that => is just an alternative to a comma; you still
need to be careful not to get out of step!

You can go a step further and leave the string quoting off the
keys if you wish when using the => notation, thus

%port = (Campbeltown => "Ballycastle",Cairnryan =>

"Belfast", Stranraer => "Larne", Liverpool =>

"Belfast");

(if your keys aren't just single words, don't try this final step as
you'll confuse the Perl compiler)

You can go a step further and leave the string quoting off the
keys if you wish when using the => notation, thus:

%port = (Campbeltown => "Ballycastle",Cairnryan =>

"Belfast", Stranraer => "Larne", Liverpool =>

"Belfast");

If your keys aren't just single words, don't try this final step as
you'll confuse the Perl compiler.

14.3 Processing every element of a hash

So far you've looked up explicit elements of a hash and copied
the whole hash into a list from which you could:

• extract each key in turn by examining alternate elements

• count the elements (@list/2);

Chapter 14 P211

148 Well House Consultants

Keys and values

There are, though, other functions built in to Perl that let you go
through each pair in turn without having to copy the whole hash to
a list explicitly.

• keys returns a list of keys

• values returns a list of contents

Each

In this example with a short hash, the solution is fine. With a
hash containing 1000 elements, perhaps it would be fine as well.
How about a very large hash -- let's say 10,000 elements?

No reason at all for the program to fail even then, but the effi-
ciency could be questioned. When you use keys or values, a list
is returned and that may have a marked impact on system
performance if it's huge. A Perl program that has already grabbed
a couple of megabytes of memory might grab another megabyte,
swap disks go wild ...

Perl is such a powerful language that even a single use of a
large hash without care in that way can affect performance! Of
course, Perl also has the solution for you -- the each function,
which returns the next (key, value) pair from your list each time
you call it.

#!/usr/local/bin/perl

nip2 - reading a hash

%port =

("Campbeltown"=>"Ballycastle","Cairnryan"=>

 "Belfast",

 "Stranraer"=>"Larne","Liverpool"=>"Belfast");

foreach $from(keys %port) {

 print "From: $from\n";

 }

foreach $to(values %port) {

 print "To: $to\n";

 }

while (($from,$to) = each (%port)) {

 print "From: $from\n";

 print "To: $to\n";

 }

How does each know which pair to return from the hash?
The first time you use it, it returns the first pair, but it then keeps

note internally of how far it has got, so that on subsequent calls it
will return the next element. Once it runs off the end of the hash, it
returns null -- just once -- then starts all over again.

Think that one through! It's a natural behaviour, but it does
mean that if you don't complete a whole cycle through each
element of a hash, a subsequent loop may start halfway. We've

seal% nip2

From: Stranraer

From: Liverpool

From: Campbeltown

From: Cairnryan

To: Larne

To: Belfast

To: Ballycastle

To: Belfast

From: Stranraer

To: Larne

From: Liverpool

To: Belfast

From: Campbeltown

To: Ballycastle

From: Cairnryan

To: Belfast

seal%

Figure 91

Running Perl program "nip2".

P211 Hashes

Learning to Program in Perl 149

done this intentionally in the next example, but sometimes it's not
what you want and it can be an obscure problem to fix if you over-
look it! 1

#!/usr/local/bin/perl

nip3 - reading a hash

%port =

("Campbeltown"=>"Ballycastle","Cairnryan"=>

 "Belfast",

 "Stranraer"=>"Larne","Liverpool"=>"Belfast");

print "keys: ";

foreach $from(keys %port) {

 print " $from";

 }

print "\n";

while (($from,$to) = each (%port)) {

 print "From: $from\n";

 last if ($from eq "Liverpool");

 }

while (($from,$to) = each (%port)) {

 print "and from: $from\n";

 }

Whilst you may safely alter the values of elements of a hash as
you pass through them with a loop of each functions, and you're
safe to delete elements as well, you should not add in new
elements.

14.4 Ordering a hash (sorting)

With a list of just four ports, the order they're printed in probably
isn't important to you. With a list of 20, it would be. But so far the
order appears random.

Perl has a built-in sort function. It takes the elements of a list
and returns them in standard string-comparison order.

#!/usr/local/bin/perl

nip4 - reading a hash

%port =

("Campbeltown"=>"Ballycastle","Cairnryan"=>

 "Belfast",

 "Stranraer"=>"Larne","Liverpool"=>"Belfast");

foreach $from(sort keys %port) {

 print "From: $from\n";

 }

1 You’ll find similar behaviour is available to you in regular expression matching,
which we’ll come to in a later chapter.

seal% nip3

keys: Stranraer Liverpool

Campbeltown Cairnryan

From: Stranraer

From: Liverpool

and from: Campbeltown

and from: Cairnryan

seal%

Figure 92

Running Perl program "nip3".

seal% nip4

From: Cairnryan

From: Campbeltown

From: Liverpool

From: Stranraer

Figure 93

Running Perl program "nip4".

Chapter 14 P211

150 Well House Consultants

We could have written
 sort (keys (%port))

to clarify the order of operation if your program will be looked at by
those not too familiar with Perl.

Let's sort a new, and slightly more complex, data set

#!/usr/local/bin/perl

sorter

%codes = (

 "Albury" => "0127974",

 "Aldbury_Common" => "0144285",

 "Aylesbury" => "01296",

 "Avebury" => "016723",

 "Abbotsbury" => "01305",

 "Almondsbury" => "01454",

 "Ashbury" => "0179371",

 "Amesbury" => "01980");

foreach $ex (sort keys %codes) {

 printf "%14s %s\n",$ex,$codes{$ex};

 }

Sorting using your own subroutine for comparison

Perhaps you'll want to sort alphabetically primarily. But other
times you might also want to sort in different ways, for example:

• numerically

• by length of string

• by value rather than by key

• by value, then if both values are the same, by the key

This looks like it's going to be messy. How can you possibly
specify all these different options to sort in a clean, easily under-
stood way?

When you call the sort function that's built in to Perl, it sorts
by making a large number of comparisons between two elements
of the incoming list and deciding which comes first and which
comes second. There's a huge amount of work involved in working
out the order of comparison, but the actual comparisons can be
very simple.

It's made easy in Perl this way:

• You call sort, passing it the list and also the name of a
subroutine which compares two elements

• sort works out the order of comparison, provides
management, returns information when completed and calls
your subroutine

In order to interface correctly, your subroutine must:

• compare records $a and $b

• return a negative integer if the first is greater, 0 if they are the

seal% sorter

Abbotsbury01305

Albury 0127974

Aldbury_Common0144285

Almondsbury01454

Amesbury 01980

Ashbury0179371

Avebury 016723

Aylesbury01296

seal%

Figure 94

Running Perl program "sorter".

Your program

Sort

Your sort
Subroutine

$a, $b
-ve,
0,

+ve

P211 Hashes

Learning to Program in Perl 151

same, and a positive integer if the second is greater.

Here's how we would sort by the length of the place name:

#!/usr/local/bin/perl

so2 - sort using subroutine

%codes = (

 "Albury" => "0127974",

 "Aldbury_Common" => "0144285",

 "Aylesbury" => "01296",

 "Avebury" => "016723",

 "Abbotsbury" => "01305",

 "Almondsbury" => "01454",

 "Ashbury" => "0179371",

 "Amesbury" => "01980");

foreach $ex (sort bylength keys %codes) {

 printf "%14s %s\n",$ex,$codes{$ex};

 }

sub bylength {

length($a) - length ($b);

}

Operators cmp and <=>

In that last example, we returned the difference between the
lengths to give us our negative, zero or positive indicator. But what
if we were comparing text strings? Our subroutine code would
have to make two checks:
 ($a eq $b) ? 0 : (($a lt $b) ? -1 : 1);

Perl has two extra comparison operators to help:

cmp compares two strings

<=> compares two numbers

both return:

-ve 1st less

 0 equal

+ve 1st greater

Used in normal code when you're looking for "true / false", they
would function like the ne or != operator respectively. But here
in the sort subroutine they let you reduce
 ($a eq $b) ? 0 : (($a lt $b) ? -1 : 1);

to
 ($a cmp $b)

A more complex sort selector routine

In this example, we've sorted initially by the length of the value
contained in the hash rather than by the key. And if the two values
had the same length, we've sorted the key strings.

seal% so2

Albury 0127974

Avebury 016723

Ashbury 0179371

Amesbury 01980

Aylesbury 01296

Abbotsbury 01305

Almondsbury01454

Aldbury_Common0144285

seal%

Figure 95

Running Perl program "so2".

Chapter 14 P211

152 Well House Consultants

#!/usr/local/bin/perl

so4 - sort using subroutine

%codes = (

 "Albury" => "0127974",

 "Aldbury_Common" => "0144285",

 "Aylesbury" => "01296",

 "Avebury" => "016723",

 "Abbotsbury" => "01305",

 "Almondsbury" => "01454",

 "Ashbury" => "0179371",

 "Amesbury" => "01980");

foreach $ex (sort myway keys %codes) {

 printf "%14s %s\n",$ex,$codes{$ex};

 }

sub myway {

 # length of stdcode

(length ($codes{$a}) <=> length ($codes{$b}))

 # if the stdcode is the same length

||

 # by the exchange name

($a cmp $b);

}

Sorting with a comparison block

Instead of specifying a subroutine name as the first parameter
after the word sort, you can also put a block of text in at that
point, and that is the block that will be used; it's in effect an inline
defined subroutine that has no name. We'll conclude our section
on sorting with an example:

#!/usr/local/bin/perl

so5 - sort using anonymous block

%codes = (

 "Albury" => "0127974",

 "Aldbury_Common" => "0144285",

 "Aylesbury" => "01296",

 "Avebury" => "016723",

 "Abbotsbury" => "01305",

 "Almondsbury" => "01454",

 "Ashbury" => "0179371",

 "Amesbury" => "01980");

foreach $ex (sort {$codes{$b}<=>$codes{$a}} keys

%codes) {

 printf "%14s %s\n",$ex,$codes{$ex};

 }

seal% so4

Abbotsbury01305

Almondsbury01454

Amesbury 01980

Aylesbury 01296

Avebury 016723

Albury 0127974

Aldbury_Common 0144285

Ashbury 0179371

seal%

Figure 96

Running Perl program "so4".

seal% so5

Ashbury 0179371

Aldbury_Common0144285

Albury 0127974

Avebury 016723

Amesbury 01980

Almondsbury01454

Abbotsbury01305

Aylesbury 01296

seal%

Figure 97

Running Perl program "so5".

P211 Hashes

Learning to Program in Perl 153

14.5 Programming techniques

You're here to learn about Perl rather than programming tech-
niques that apply to all programming languages. If you attended
the Perl Basics day, you will have had an introduction to some of
the most basic techniques, but if you skipped that day we assume
that you have programmed before and are aware.

Hashes, though, are not necessarily familiar even to the most
expert of programmers since they aren't necessarily available in
all languages. So we'll take a brief step to one side and look at a
couple of techniques that you might wish to apply, not only in Perl,
but in other languages as well.

Non-unique keys

"The keys of a hash must be unique". Yes, and the operative
word of that statement is "must".

Let's try to convert an std code file into a hash:

#!/usr/local/bin/perl

stdhash - read stdcodes into a hash

won't work - some keys are not unique

open (DIAL,"stdcodes") ||

die "No stdcodes file \n";

while (<DIAL>) {

 chop;

 ($dial,$place) = split(/\s+/,$_,2);

 $codes{$place} = $dial;

 $nread++;

 }

@places = keys %codes;

print $nread," lines read\n";

print @places+0," entries in hash\n";

print "Florida: ",$codes{"Florida"},"\n";

What happened?
There were some lines in the incoming data file that repeated

the keys from previous lines. The first entry for each such key in
the hash correctly created a new element, but subsequent entries
overwrote the first element.

If you might have duplicate keys being created, you MUST
check every time. And you are then left with two options:

• merge both record into a single key-ed record OR

• create a new unique key

Let's see examples of both methods:

seal% stdhash

4898 lines read

4742 entries in hash

Florida: 001954

seal%

Figure 98

Running Perl program "stdhash".

Chapter 14 P211

154 Well House Consultants

#!/usr/local/bin/perl

stdhash2 - read stdcodes into a hash

append info if element already exists

open (DIAL,"stdcodes") ||

die "No stdcodes file \n";

while (<DIAL>) {

 chop;

 ($dial,$place) = split(/\s+/,$_,2);

 if ($codes{$place}) {

 $codes{$place} .= ", $dial";

 } else {

 $codes{$place} = $dial;

 }

 $nread++;

 }

@places = keys %codes;

print $nread," lines read\n";

print @places+0," entries in hash\n";

print "Florida: ",$codes{"Florida"},"\n";

In that example, there were still less entries in the hash than
lines read, and the programmer, when he uses the contents of the
hash later in his program, must be aware of the possibilities of
multi-hit records like the one for Florida.

Let's now set up new, unique keys:

#!/usr/local/bin/perl

stdhash3 - read stdcodes into a hash

create unique keys if element already exists

open (DIAL,"stdcodes") || die "No stdcodes file

\n";

while (<DIAL>) {

 chop;

 ($dial,$place) = split(/\s+/,$_,2);

 $place .= "-" while ($codes{$place}) ;

 $codes{$place} = $dial;

 $nread++;

 }

@places = keys %codes;

print $nread," lines read\n";

print @places+0," entries in hash\n";

print "Florida: ",$codes{"Florida"},"\n";

And we now have a complete hash and a "nice" single code for
Florida. But it's a pity only the one record was listed out! Of
course, we could solve that by adding a loop to our print state-

seal% stdhash2

4898 lines read

4742 entries in hash

Florida: 001305, 001352, 001407,

001561, 001813, 001904, 001941,

001954

seal%

Figure 99

Running Perl program "stdhash2".

seal% stdhash3

4898 lines read

4898 entries in hash

Florida: 001305

seal%

Figure 100

Running Perl program "stdhash3".

P211 Hashes

Learning to Program in Perl 155

ment to keep adding "-" to the key and seeing if another record
exists, and that's a good technique in some circumstances.

Looking for matching keys

There will be times you wish to select all records that match a
regular expression rather than an explicit record. For example:

• All records with an ISBN of /.-56592-...-./

• Records for Florida, upper or lower case!

• Records for Florida, perhaps with - signs on the end

You can't directly match the key to a regular expression, but you
could write:
 @plkeys = keys (%codes);

 @plmatches = grep(/Florida-*/,@plkeys);

and loop though any / all matches.

#!/usr/local/bin/perl

stdhash4 - read stdcodes into a hash

create unique keys if element already exists

read back checks for all matching keys

open (DIAL,"stdcodes") ||

die "No stdcodes file \n";

while (<DIAL>) {

 chop;

 ($dial,$place) = split(/\s+/,$_,2);

 $place .= "-" while ($codes{$place}) ;

 $codes{$place} = $dial;

 $nread++;

 }

@places = keys %codes;

print $nread," lines read\n";

print @places+0," entries in hash\n";

@plkeys = keys (%codes);

@plmatches = grep(/^Florida-*$/,@plkeys);

foreach (@plmatches){

print "$_: ",$codes{"$_"},"\n";

}

Ah, back to sort to put them in a sensible order, I think!

Use hashes for stock numbers

When do you use hashes?
When you want to look up the line of a table and you don't care

which line number it is, but rather what is in one particular field.
I'm handling telephone numbers, perhaps working for BT, and I

want to enter some information about 813520. It's a number, so
can I use
 $phone[813520] Right?

seal% stdhash4

4898 lines read

4898 entries in hash

Florida------: 001941

Florida-: 001352

Florida---: 001561

Florida--: 001407

Florida: 001305

Florida-----: 001904

Florida----: 001813

Florida-------: 001954

seal%

Figure 101

Running Perl program "stdhash4".

Chapter 14 P211

156 Well House Consultants

No, I can't because Perl lists are not sparse. They're fully popu-
lated, which out of jargon, means that space would be allocated all
the way from $phone[0] through $phone[813519] before
$phone[813520] could be created!

You don`t want to look down a table with that number of lines
for the 813520th entry, so don't use a list. Use a hash!

Deleting elements, clearing out hashes

To delete an element from a hash:
 delete $phone{"813520"};

To clear out an entire hash:
 undef %phone;

It's quite common to need to clear out a hash.
Scenario: You've been working on a set of phone numbers for

one exchange, and you're going to move on and reuse the same
hash for the next exchange. What happens if you don't clear the
hash? The numbers from the old exchange appear on the new
exchange too.

Initialising hashes

If you create an element in a hash, it takes a default value of null
/ zero.

Remember the "x" operator that replicated a string? You can
create a whole series of elements in a hash using that same oper-
ator in a hash context:

#!/usr/local/bin/perl

bankout - initial monopoly money

@players = qw(Tyler Lisa Graham Kimberly Chris);

@cash{@players} = (1200) x @players;

while (($player,$money) = each (%cash)) {

 print "$money $player\n";

 }

The x operator can also be used to initialise a list. Here's a list
of 1200s:
 @hands = (1200) x 6;

14.6 Special hashes

We introduced you to the special list @ARGV, and there are
others that you'll meet later. There are also special hashes.

%ENV

You can read your environment using the %ENV hash. The keys
are the names of the environment variables, and the values are
the content.

seal% bankout

1200 Graham

1200 Tyler

1200 Chris

1200 Lisa

1200 Kimberly

seal%

Figure 102

Running Perl program "bankout".

P211 Hashes

Learning to Program in Perl 157

#!/usr/local/bin/perl

envrep - environment report

foreach $vn(sort keys %ENV) {

 printf "%-15.15s %-50.50s\n",

 $vn,$ENV{$vn};

 }

With the module
 use Env;

you can import all the environment variables into Perl variables of
the same name. Specifying a list of names in the use statement
allows you to be selective. Thus:

seal% envrep

CC gcc

CLASSDIR .

DISPLAY :0.0

EDITOR vi

GS_DEVICE ljet3

GS_LIB /usr/local/lib/ghostscript

HELPPATH /usr/openwin/lib/locale:/usr/openwin/lib/help

HOME /export/home/graham

HZ 100

LANG C

LOGNAME graham

MAIL /var/mail/graham

MANPATH /usr/local/share/man:/usr/openwin/share/man:/usr/s

MOZILLA_HOME /extra/disc0.slice4/net4

NOSUNVIEW 0

OPENWINHOME /usr/openwin

PATH /usr/openwin/bin:/usr/bin:.:/usr/ccs/bin:/usr/sbin

PWD /penguin/perl/profile/book

SHELL /bin/csh

TERM sun-cmd

TERMCAP sun-cmd:te=\E[>4h:ti=\E[>4l:tc=sun:

TZ GB

USER graham

WINDOW_TERMIOS XFILESEARCHPATH /usr/openwin/lib/locale/%L/%T/%N%S:/usr/openwin/li

XINITRC /usr/openwin/lib/Xinitrc

seal%

Figure 103

Running Perl program "envrep".

Chapter 14 P211

158 Well House Consultants

#!/usr/local/bin/perl

env2 - use Env;

use Env qw(TERMCAP HELPPATH);

print "Termcap: $TERMCAP\n";

print "HelpPath: $HELPPATH\n";

print "Openwinhome: $OPENWINHOME\n";

print "Openwinhome: ",$ENV{"OPENWINHOME"},"\n";

seal% env2

Termcap: sun-cmd:te=\E[>4h:ti=\E[>4l:tc=sun:

HelpPath: /usr/openwin/lib/locale:/usr/openwin/lib/help

Openwinhome:

Openwinhome: /usr/openwin

seal%

Figure 104

Running Perl program "env2".

P211 Hashes

Learning to Program in Perl 159

14.7 Summary

Hashes are a little bit like lists except the elements they contain
are not numbered but named.

You refer to the whole of a hash using a name like %hname, and
individual elements using $hname{"elname"}.

You can set up the whole of a hash from a list; alternate
elements being taken as keys and values. To aid readability, you
may replace each comma by => in this situation.

To find out the name of each element in a hash, use the keys
function, or use the each function to step through each key, value
pair in turn. The functions return the elements in what appears to
be a random order.

Any list (including keys) can be sorted using the sort function,
which may be given the name of a subroutine that can place
record $a in relation to record $b. This subroutine may be
provided in an anonymous subroutine format.

Keys must be unique. Reusing a key will overwrite a record,
and you must take great care to ensure this is what you mean to
do in a program. Various other programming techniques will also
need consideration if you're new to hashes.

You may reference your environment variables through the
%ENV hash, although you may also

 use Env;
to give them all direct variable names in your program.

Chapter 14 P211

160 Well House Consultants

Exercise

Using a hash, count the number of hits in the access log file for each host computer.

Our example answer is web_count

Modify your example to list out the top ten hits first, then all other systems that have accessed us, just by name.

Our example answer is web_c2

Sample

graham@otter:~/profile/answers_pp> web_count

 catfish 5
 dogfish 22

 seal 313

 sardine 348

 dab 1

 pilchard 1

 localhost 1

 o_whelk 458

 sealion 324

etc
 trout 302

 walrus 310

 seaweed 4

graham@otter:~/profile/answers_pp>

Sample

graham@otter:~/profile/answers_pp> web_c2

Top hits:

 skate 1995

 whale 1044

 o_whelk 458

 perch 391

 sardine 348

 sealion 324

 flipper 322

 aviemore 318

 seal 313

 magnet 312

Also accessed by:

 walrus trout mussel plaice tuna

 clam lecht dogfish dolphin catfish

 seaweed whiting dab pilchard localhost

 manatee whelk

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 161

15 More on Character
Strings

You learnt something of character string handling quite a while
ago. Since then you've learnt about a whole lot of other things. But
there are still a number of very important string handling facilities
of which you should be aware.

Let's start by summarising what we've covered to date.

15.1 Summary to date

Strings of any length can be held in a scalar variable, and that
string can contain any character including non-printables.

Built-in functions can be used to manipulate strings, for
example:
length to find out the length of a string
chop to remove the last character of a string
index to find the first occurrence of one string in another
index (different call) to find the next occurrence ...
substr to extract part of a string
substr (different call) to edit a string
rindex find the last occurrence of one string in another
lc convert string to lower case
lcfirst convert 1st character of string to lower case
uc convert string to upper case
ucfirst convert 1st character of string to upper case
sprintf format a string

String handling operators we have used include:
x duplicate string on left number of times on right
 (e.g. "allo" x 3 is "alloalloallo")
".." Convert string in brackets into a text string

Strings may be compared using string comparison operators:
eq returns true if the strings are identical
ne returns true if the strings are not identical
lt returns true if the first string is lexically less than

the second
le returns true if the first string is lexically less than

the second, or identical
gt returns true if the first string is lexically greater than

the second
ge returns true if the first string is lexically greater than

the second, or identical
cmp returns -ve / 0 / +ve if the first string is

greater than / equal to / less than

Chapter 15 P212

162 Well House Consultants

A string may be checked to see if it matches a pattern (regular
expression) using:
=~ returns true if the string matches the regular
expression
!~ returns true if the string does NOT match

the regular expression

The regular expression is specified between / characters, and
comprises of:

• characters

A to Z, a to z, 0 to 9 and more literal characters
\$ \^ \\ and more literal special characters
\n new line
\t \f \e \a tab, form feed, escape, alarm
\243 octal 243 (pound sign £)
\xa3 hex a3 (also pound sign £)

• any one character from a group

[abcdh-z] any one character from the brackets
[^abcdh-z] any one character NOT from the brackets
\s any white space character
\S any character that's not white space
\d any digit
\D any non-digit
\w any word character
\W any non-word character
. any character

• anchors

^ match at start of string
$ match at end of string

• counts

? 0 or 1 of the previous character
* 0 or more of the previous character
+ 1 or more of the previous character

You also learnt in the section about the default pattern matching
space -- $_ -- that Perl matches regular expressions against the
contents of that variable if you don't use an explicit =~ or !~.

15.2 Extracting information from a match

You can ask the question "Does this string match?" and get a
yes/no answer.

This first example looks for two words that form a name. And it
can confirm whether or not the format is correct:

P212 More on Character Strings

Learning to Program in Perl 163

#!/usr/local/bin/perl

names - extract forename and surname

print "please enter your name ";

chop ($name = <STDIN>);

if ($name =~ /^\s*\S+\s+\S+\s*$/) {

 print "Forename, Surname sequence";

} else {

 print "no match";

}

print "\n";

Good. But what if I want to make use of the matching words?
Perl will gather and store groups for you if you use round

brackets in a regular expression, so you can write:
 if ($name =~ /^\s*(\S+)\s+(\S+)\s*$/)

$1, $2, etc

The groups are stored in the special variables $1, $2, etc. So:

#!/usr/local/bin/perl

n2 - extract forename and surname

print "please enter your name ";

chop ($name = <STDIN>);

if ($name =~ /^\s*(\S+)\s+(\S+)\s*$/) {

 print "Hi $1. Your Surname is $2.";

} else {

 print "no match";

}

print "\n";

Assign to a list

So far you've used the =~ operator in a scalar context. If you
use it in a list context, you'll be returned a list of all the matched
groups:

#!/usr/local/bin/perl

n3 - extract forename and surname

print "please enter your name ";

chop ($name = <STDIN>);

if (($first,$second) = ($name =~

 /^\s*(\S+)\s+(\S+)\s*$/)) {

 print "Hi $first. Your Surname is $second.";

} else {

 print "no match";

}

print "\n";

seal% names

please enter your name asasd

no match

seal% names

please enter your name Graham

Ellis

Forename, Surname sequence

seal%

Figure 105

Running Perl program "names".

seal% n2

please enter your name Graham

Ellis

Hi Graham. Your Surname is Ellis.

seal%

Figure 106

Running Perl program "n2".

seal% n3

please enter your name Graham

Ellis

Hi Graham. Your Surname is Ellis.

seal%

Figure 107

Running Perl program "n3".

Chapter 15 P212

164 Well House Consultants

$', $& and $`

Whenever you're matching a string, the incoming string can be
thought of as being in three parts

• the part before the match

• the match itself

• the part after the match

Perl can make all three of those available to you in $' $& and
$`.

If you are matching large amounts of data in your application,
you are warned that you may not want to use these variables as
they can have a significant effect on performance. Used even
once in some initial code and they'll be calculated for every regular
expression match in your program!

#!/usr/local/bin/perl

n4 - extract forename and surname

print "please enter your message ";

chop ($name = <STDIN>);

if (($first,$second) = ($name =~

 /([A-Z][a-z]*)\s+([A-Z][a-z]*)/)) {

 print "To $first. Surname is $second.\n";

 print "Prematch: $`\n";

 print "Match: $&\n";

 print "Postmatch: $'\n";

} else {

 print "no match\n";

}

15.3 More about regular expressions

When we were just matching regular expressions to ask the
question "is there a match?" it really didn't matter if there were two
possible ways that the match could be made. But now it does.
Look at that last example and you'll see that the match was made
to "Lisa Ellis" rather than to "Graham Ellis".

Have a look at this match:

#!/usr/local/bin/perl

html1 - extract an HTML tag

$page = "<TITLE>This is a Web page</TITLE>";

if ($page=~ /<(.*)>/) {

 print "Tag: $1\n";

 print "Prematch: $`\n";

 print "Match: $&\n";

 print "Postmatch: $'\n";

} else {

 print "no match\n";

}

seal% n4

please enter your message to Lisa

Ellis from Graham Ellis

To Lisa. Surname is Ellis.

Prematch: to

Match: Lisa Ellis

Postmatch: from Graham Ellis

seal%

Figure 108

Running Perl program "n4".

seal% html1

Tag: TITLE>This is a Web page</

TITLE

Prematch:

Match: <TITLE>This is a Web page</

TITLE>

Postmatch:

seal%

Figure 109

Running Perl program "html1".

P212 More on Character Strings

Learning to Program in Perl 165

Hoping to be given a single tag back? Sorry ...
Perl matches

• left-most

• longest

unless instructed otherwise.

What else can I put in regular expressions?

| or
+? None-greedy counts
*?

??

{2,}

{2}

{2,4}

\b Anchor - word boundary
\B Anchor - non-word-boundary
\L ... \E

\l

\Q

#!/usr/local/bin/perl

html2 - extract an HTML tag

$page = "<TITLE>This is a Web page</TITLE>";

if ($page=~ /<(.*?)>/) {

 print "Tag: $1\n";

 print "Prematch: $`\n";

 print "Match: $&\n";

 print "Postmatch: $'\n";

} else {

 print "no match\n";

}

More brackets

The grouping brackets that we've been using to capture inter-
esting parts of the regular expression can also be followed by a
count. For example:
 (\w+\.)+

will match a series of word characters followed by a literal . one
or more times. This is a useful facility.

To match an IP address we might write:
 (\d{1,3}\.){3}\d{1,3}

If we happen to be capturing (via $1 and $2, or via a list) the
interesting parts of a match, this can give us a problem. An
unwanted part of the IP address will be captured and we'll have to
use a list slice or a junk variable name to get rid of it. Better to use
(?:) for the grouping. These alternative brackets don't
capture and they're not the "package deal" of (...). Thus:
 (?:\d{1,3}\.){3}\d{1,3}

seal% html2

Tag: TITLE

Prematch:

Match: <TITLE>

Postmatch: This is a Web page</

TITLE>

seal%

Figure 110

Running Perl program "html2".

Chapter 15 P212

166 Well House Consultants

15.4 Match modifiers

How do I match ignoring case?
 [Hh][Ee][Ll]{2}[Oo]

No. There are modifiers that may be added AFTER the final
delimiter:
i ignore case
x any space character is a comment

x requires noting. By default, spaces are literally matched. As a
result, regular expressions tend to be long and complex strings.
The x modifier means that spaces are taken as comments and
comments are allowed.
if ($instring =~

 m/^\s*(\d{4,4})(\d{2,2})(\d{2,2})\s*$/) {

 $day = $3; $year = $1; $month = $2; }

can become
if ($instring =~ m/^\s*# leading white space allowed

(\d{4,4})# 4 digits - year

(\d{2,2})# 2 digits - month

(\d{2,2})# 2 digits - day

\s*$/x) {# trailing while space allowed

$day = $3; $year = $1; $month = $2; }

There are other modifiers which affect the operation of the
match.
g "global" match

in a scalar context, return next match
in a list context, return all matches

#!/usr/local/bin/perl

html3 - extract all HTML tags

$page = "<TITLE>This is a Web page</TITLE>";

while ($page=~ /<(.*?)>/g) {

 print "Tag: $1\n";

 print "Prematch: $`\n";

 print "Match: $&\n";

 print "Postmatch: $'\n";

}

Match Modifiers

i ignore case

x any space character is a comment

g global match

s single line mode

m multiline mode

o once only evaluation

seal% html3

Tag: TITLE

Prematch:

Match: <TITLE>

Postmatch: This is a Web page</

TITLE>

Tag: /TITLE

Prematch: <TITLE>This is a Web

page

Match: </TITLE>

Postmatch:

seal%

Figure 111

Running Perl program "html3".

P212 More on Character Strings

Learning to Program in Perl 167

#!/usr/local/bin/perl

html4 - extract all HTML tags

$page = "<TITLE>This is a Web page</TITLE>";

@tags = ($page =~/<(.*?)>/g);

print $#tags+1," tags\n";

foreach (@tags){

 print;

 print "\n";

 }

Global v Greedy

It's important to specify global matching when you want to get
back more than one match from within a single string. It's also
important to specify sparse (rather than defaulting to greedy)
counts where necessary within the regular expression. The next
example shows you three different matches to a piece of HTML.

$abcd = "<h1>This is a heading</h1>above this text";

@tag = ($abcd =~ /<(.*)>/);

print ("Whole string: $abcd\n");

print ("Greedy: ",join(" %% ",@tag),"\n");

@tag = ($abcd =~ /<(.*?)>/);

print ("Sparse: ",join(" %% ",@tag),"\n");

@tag = ($abcd =~ /<(.*?)>/g);

print ("Sparse and global: ",join(" %% ",@tag),"\n");

The first match will return a single result since it's not global. All
the text from the first < character to the last > character will be the
result as the match is greedy.

The second match will return a single result, again, since it's not
global. It will result in the text from the first < to the subsequent >
character since the match is not greedy.

The final match will return multiple results as it's global. The
results will not overlap, because a global match resumes matching
where the previous match left off. In this example, the match is
sparse and the result is a list of matches, each of which is the text
from a < to the subsequent >.

Here are the results when we run the program:

[localhost:~/jan03] graham% perl greedyvglobal.pl

Whole string: <h1>This is a heading</h1>above this text

Greedy: h1>This is a heading</h1>above this</b

Sparse: h1

Sparse and global: h1 %% /h1 %% b %% /b

[localhost:~/jan03] graham%

seal% html4

2 tags

TITLE

/TITLE

seal%

Figure 112

Running Perl program "html4".

Chapter 15 P212

168 Well House Consultants

s single line mode
. matches \n (otherwise it does not!)

m multiline mode
^ and $ match at embedded line starts and ends
\A and \Z still match true string start and end only

o once only evaluation
(for efficiency; use this if the regular expression
never changes within a single run)

15.5 Alternative delimiters

Remember that "Hello" could be written
 qq!Hello!

In the same way,
 /sdfsdfsdsdfsdf/

can be rewritten
 m-sdfsdfsdsdfsdf-

Here's an example where we required / characters within our
match

 if ($instring =~ m!^\s*(\d{1,2})[/\\\s](\d{1,2})[/\\\s](\d{2,4})\s*$!){

 $day = $2; $month = $1; $year = $3 ; }

15.6 Some favourite regular expressions

We thought you might find these useful, they're all written using
Perl-style regular expressions.

To match an email address

/(?:^|\s)[-a-z0-9_.]+@([-a-z0-9]+\.)+[a-z]{2,6}(?:\s|$)/i

To match a UK Postcode

/\b[a-z]{1,2}\d{1,2}[a-z]?\s*\d[a-z]{2}\b/i

To match an American Zip code

/\b\d{5}(?:[-\s]\d{4})?\b/

To match a date (UK Style)

m!\b[0123]?\d[-/\s\.](?:[01]\d|[a-z]{3,})[-/\s\.](?:\d{2})?\d{2}\b!i

To match a time

/\b\d{1,2}:\d{1,2}(?:\s*[aApP]\.?[mM]\.?)?\b/

To match a complete URL for a web page

m!https?://[-a-z0-9\.]{4,}(?::\d+)?/[^#?]+(?:#\S+)?!i

To match a Visa number

/\b4\d{3}[\s-]?\d{4}[\s-]?\d{4}[\s-]?\d{4}\b/

To match a Mastercard number

/\b5[1-5]\d{2}[\s-]?\d{4}[\s-]?\d{4}[\s-]?\d{4}\b/

To match a UK Phone number

/\b0[-\d\s]{10,}\b/

To match a UK car registration plate

/\b[A-Z]{2}(?:51|02|52)[A-Z]{3}\b/# current series

/\b[A-HJ-NP-Y]\d{1,3}[A-Z]{3}\b/# previous series

P212 More on Character Strings

Learning to Program in Perl 169

/\b[A-Z]{3}\d{1,3}[A-HJ-NP-Y]\b/# previous series

/\b(?:[A-Z]{1,2}\d{1,4}|[A-Z]{3}\d{1,3})\b/# old series - letters first

/\b(?:\d{1,4}[A-Z]{1,2}|\d{1,3}[A-Z]{3})\b/# old series - digits first

To match a UK national insurance number

/\b[a-z]{2}\s?\d{2}\s?\d{2}\s?\d{2}\s?[a-z]\b/i

To match a book's ISBN number

/\b(?:[\d]-?){9}[\dxX]\b/

Notes:
a) We've used non-capture groups throughout. You're free to

use our expressions and add in extra brackets if you wish to
extract parts of the match.

b) Some of these examples are fairly rudimentary tests, and it's
up to you to check that they're suitable for use in your
application

c) Many of these examples can only check that a string of text
is in the correct format. There's no way that we can check if
a particular car registartion was issued, unless of course we
have access to the DVLC database.

Chapter 15 P212

170 Well House Consultants

Let's try those out:
$./favex.pl testdata

from "My car registration is J407LCM and my neighbour's in WN02PNG." we can get...

Car registration #1 WN02PNG

Car registration #2 J407LCM

from "There's book 1-56592-257-3 here beside me as I write." we can get...

US Zipcode 56592

ISBN Number 1-56592-257-3

from "My phone number is 01225 708225 and my fax is 01225 707126" we can get...

US Zipcode 01225

phone number 01225 708225

from "My email address is graham@wellho.net" we can get...

email address graham@wellho.net

from "You can read about me at http://www.grahamellis.co.uk/index.html" we can get...

Complete URL http://www.grahamellis.co.uk/index.html

from "My national insurance number is YX 17 11 94 A" we can get...

UK date 17 11 94

UK N.I. number YX 17 11 94 A

from "My date of birth is 16 July 1954, and it is now 10/8/2002" we can get...

UK date 16 July 1954

from "The time is 21:55" we can get...

time 21:55

from "The time is 9:55 p.m. (if you still use that style)" we can get...

time 9:55 p.m

from "My postcode is SN12 6QL, and my Visa is NOT 4567 6552 5532 7761!" we can get...

UK Postcode SN12 6QL

Visa number 4567 6552 5532 7761

Car registration #4 SN12

Car registration #5 6QL

from "My Mastercard is not 5353 6789 0087 6534 and our car is not 404WHC." we get...

Mastercard number 5353 6789 0087 6534

Car registration #5 404WHC

from "90011-1774 would be a zip code from California" we can get...

US Zipcode 90011-1774

from "So would 90011 without a further 4 digits" we can get...

US Zipcode 90011

$

P212 More on Character Strings

Learning to Program in Perl 171

Here's the test data we used:

My car registration is J407LCM and my neighbour's in WN02PNG.

There's book 1-56592-257-3 here beside me as I write.

My phone number is 01225 708225 and my fax is 01225 707126

My email address is graham@wellho.net

You can read about me at http://www.grahamellis.co.uk/index.html

My national insurance number is YX 17 11 94 A

My date of birth is 16 July 1954, and it is now 10/8/2002

The time is 21:55

The time is 9:55 p.m. (if you still use that style)

My postcode is SN12 6QL, and my Visa is NOT 4567 6552 5532 7761!

My Mastercard is not 5353 6789 0087 6534 and our car is not 404WHC.

90011-1774 would be a zip code from California

So would 90011 without a further 4 digits

and here's the Perl program itself:

#!/usr/bin/perl -n

Some favourite regular expressions

chop;

print "from \"$_\" we can get \n";

/(?:^|\s)[-a-z0-9_.]+@([-a-z0-9]+\.)+[a-z]{2,6}(?:\s|$)/i and

print "email address $&\n";

/\b[a-z]{1,2}\d{1,2}[a-z]?\s*\d[a-z]{2}\b/i and print "UK Postcode $&\n";

/\b\d{5}(?:[-\s]\d{4})?\b/ and print "US Zipcode $&\n";

m!\b[0123]?\d[-/\s\.](?:[01]\d|[a-z]{3,})[-/\s\.](?:\d{2})?\d{2}\b!i and

print "UK date $&\n";

/\b\d{1,2}:\d{1,2}(?:\s*[aApP]\.?[mM]\.?)?\b/ and print "time $&\n";

m!https?://[-a-z0-9\.]{4,}(?::\d+)?/[^#?]+(?:#\S+)?!i and print "Complete URL $&\n";

/\b4\d{3}[\s-]?\d{4}[\s-]?\d{4}[\s-]?\d{4}\b/ and print "Visa number $&\n";

/\b5[1-5]\d{2}[\s-]?\d{4}[\s-]?\d{4}[\s-]?\d{4}\b/ and

print "Mastercard number $&\n";

/\b0[-\d\s]{10,}\b/ and print "phone number $&\n";

/\b[A-Z]{2}(?:51|02|52)[A-Z]{3}\b/ and print "Car registration #1 $&\n";

/\b[A-HJ-NP-Y]\d{1,3}[A-Z]{3}\b/ and print "Car registration #2 $&\n";

/\b[A-Z]{3}\d{1,3}[A-HJ-NP-Y]\b/ and print "Car registration #3 $&\n";

/\b(?:[A-Z]{1,2}\d{1,4}|[A-Z]{3}\d{1,3})\b/ and print "Car registration #4 $&\n";

/\b(?:\d{1,4}[A-Z]{1,2}|\d{1,3}[A-Z]{3})\b/ and print "Car registration #5 $&\n";

/\b[a-z]{2}\s?\d{2}\s?\d{2}\s?\d{2}\s?[a-z]\b/i and print "UK N.I. number $&\n";

/\b(?:[\d]-?){9}[\dxX]\b/ and print "ISBN Number $&\n";

Chapter 15 P212

172 Well House Consultants

Exercise

Write a subroutine as follows: name urlsplit
 input a text string representing a URL
output a list of elements from the URL:

0 protocol
 1 server name
 2 port no
 3 page name
 4 location on page

For example, if you passed the subroutine http://www.wellho.net:80/course/index.html#june your return list would contain:
 0 http

 1 www.wellho.net

 2 80

 3 /course/index.html

 4 june

Allow for protocols http, https and ftp. Allow the user to omit the protocol from the input URL (they should
default to 80, 443 and 21 for http, https and ftp). Allow the user to omit a location on the page

Also write a short test program to call your subroutine and ensure that it works correctly.

Our example answer is regextra

Sample

$./regextra

Please enter a URL: http://www.wellho.net/course/index.html

 /course/index.html :80 www.wellho.net http

$./regextra

Please enter a URL: https://cedar.he.net/internal.html#javabooks

 #javabooks /internal.html :443 cedar.he.net https

$

P212 More on Character Strings

Learning to Program in Perl 173

15.7 Substitutions

You've matched. You've matched and extracted the string or
parts of it. Now you want to match and replace.

• Instead of the m operator, use the s operator

• Add a replacement expression

Here's an example:

#!/usr/local/bin/perl

totext - convert & to & < to < > to >

print "text: ";

$sample .= $_ while (<STDIN>);

$whole = $sample;

$sample =~ s/&/&/;

$sample =~ s/</</;

$sample =~ s/>/>/;

print "First changes: $sample";

$_=$whole;

s/&/&/g;

s/</</g;

s/>/>/g;

s/\n{2,}/<P>/g;

s/\n/
\n/g;

print "Second changes: $_";

The first set of changes matches a regular expression and
makes a single change. =~ is used so the change is made to the
named variable.

With the second set of changes, no =~ is used so the change is
made to $_. The g modifier causes multiple (global) changes to
be made. Note that the \n in the output string is not re-matched.
In other words, we don't end up with

... and so on.

seal% totext

text: if ($a <=> $b && $c < $d) {

$j = ($k < $p;) }

First changes: if ($a <=> $b

&& $c < $d) {

$j = ($k < $p;) }

Second changes: if ($a <=>

$b && $c < $d) {

$j = ($k < $p;) }

seal%

Figure 113

Running Perl program "totext".

Chapter 15 P212

174 Well House Consultants

Some common substitutions:
s/^\s*//;# remove white space off string start
s/\s+/ /g;# replace all blocks of white space withsingle

space
s/\s*$//;# remove trailing white space

Further notes:

• Alternative delimiters may be used

• Count of changes made is returned

• Output string is NOT a regular expression.

• It may use $1, etc

• \1 (for 1st match) etc

• Other special characters as if they were literals

#!/usr/local/bin/perl

phone - internationalise a number

print "entry: ";

$_=<STDIN>;

$nmatch = s:\b0([1-9]):+44 (0) \1:g;

print "Count: $nmatch\n";

print;

Substitute and execute

Consider:

#!/usr/local/bin/perl

name - capitalise!

print "Message: ";

$_=<STDIN>;

/\b(graham)\b/i;

$proper = ucfirst(lc($1));

s/\bgraham\b/$proper/;

print;

seal% phone

entry: call 01380 813520

Count: 1

call +44 (0) 1380 813520

seal% phone

entry: call 01380 813520, or fax

01380 818281

Count: 2

call +44 (0) 1380 813520, or fax

+44 (0) 1380 818281

seal% phone

entry: to call from Germany, dial

0044 1380 813520

Count:

to call from Germany, dial 0044

1380 813520

seal%

Figure 114

Running Perl program "phone".

seal% name

Message: this is a message for

graham to read

 this is a message for Graham to

read

seal%

Figure 115

Running Perl program "name".

P212 More on Character Strings

Learning to Program in Perl 175

Can we write the following?

#!/usr/local/bin/perl

name2 - capitalise!

#

print "Message: ";

$_=<STDIN>;

s/\b(graham)\b/ucfirst(lc($1))/;

print;

Yes, but it doesn't do what we want!
The e modifier on the s operator says "execute the second part

as a Perl expression":

#!/usr/local/bin/perl

name3 - capitalise!

print "Message: ";

$_=<STDIN>;

s/\b(graham)\b/ucfirst(lc($1))/e;

print;

Note that the e modifier, like the eval function, causes Perl to
have to go back to the compiler. If this is called deep within a loop
it can have a serious detrimental effect on performance.

Perl also has an eval function that lets you evaluate a string in
a similar way. You're recommended to eval a whole loop once,
rather than have an eval within a loop, if possible!

15.8 Regular expression efficiency

• If you use $& $` or $' anywhere in your program, they'll be
saved at every regular expression match.

• Use the o modifier on the end of regular expressions if the
pattern does not change over the life of the process.

• Two short regular expression matches are usually faster than
one big one.

• Reject common short cases early.

• Try to avoid too many quantifiers and optional matches in
regular expressions.

• Try to increase the length of non-optional pieces of text in
regular expressions.

• If you are rematching the latest string, just specify //.

• If splitting, it's more efficient to use a fixed string rather than a
pattern.

• Use study where appropriate.

seal% name2

Message: This is a message for

graham to read

This is a message for

ucfirst(lc(graham)) to read

seal%

Figure 116

Running Perl program "name2".

seal% name3

Message: This is a message for

graham to read

This is a message for Graham to

read

seal%

Figure 117

Running Perl program "name3".

Chapter 15 P212

176 Well House Consultants

15.9 tr

tr lets you translate all occurrences of one character to
another. It does not use regular expressions, but it does use a
similar-looking syntax:

#!/usr/local/bin/perl

pwline - change : to ,

$line =

"berlioz:x:2002:2000::/trainee/berlioz:/bin/csh"

;

print $line,"\n";

$line =~ tr /:/,/;

print $line,"\n";

tr can be given multiple characters to change, and ranges of
characters, using square brackets. And the letter "y" can be used
in place of tr. An alternative delimiter may be used, as with m, s,
qq, etc.

Modifiers:
 c compliment - change all characters that don't match
 s squeeze - compress resulting multiple characters to 1

character

#!/usr/local/bin/perl

pwline2 - change : to ,

$line =

"berlioz:x:2002:2000::/trainee/berlioz:/bin/csh"

;

print $line,"\n";

$line =~ y/a-zA-Z/A-Za-z/;

print $line,"\n";

$line =~ tr!a-zA-Z0-9/!,!cs;

print $line,"\n";

First change -- upper case to lower case, and vice versa
Second change -- all non-alphanumerics (and non-slashes) to

commas, and squeeze out resultant multiple commas to
single commas.

15.10 Handling binary text

On a number of operating systems, there are few utilities avail-
able to handle binary data. Perl plugs this gap!

C programmers will already be aware that the "null" character
terminates a string in C. DOS programmers will know of the havoc
a CTRL-Z can cause. But Perl has no such limitations. ANY one
of the 256 possible combinations of 8 bits are allowed anywhere
in a scalar.

There are a number of "bit by bit" operators:
& bitwise AND operator
| bitwise OR operator

seal% pwline

berlioz:x:2002:2000::/trainee/

berlioz:/bin/csh

berlioz,x,2002,2000,,/trainee/

berlioz,/bin/csh

seal%

Figure 118

Running Perl program "pwline".

seal% pwline2

berlioz:x:2002:2000::/trainee/

berlioz:/bin/csh

BERLIOZ:X:2002:2000::/TRAINEE/

BERLIOZ:/BIN/CSH

BERLIOZ,X,2002,2000,/TRAINEE/

BERLIOZ,/BIN/CSH

seal%

Figure 119

Running Perl program "pwline2".

P212 More on Character Strings

Learning to Program in Perl 177

^ bitwise XOR operator
~ bitwise NOT operator
<< Left shift operator
>> Right shift operator

and also functions such as pack and unpack.
Take, for instance, a GIF file. Let's say we have a number of

files with names ending ".gif" and we want to check whether they
really are GIF files, and if so, report on the image size. In ".gif" files,
we have the following header:

GIFbytes 0 to 2 87a or 89abytes 3 to 5 X sizebytes 6 & 7 - byte swapped Y size bytes 8 & 9 - byte swapped

Here is the sort of output we want:

#!/usr/local/bin/perl

ystwyth.pl - unpack / binary data

foreach $fyle(@ARGV) {

 print ("======= $fyle ========\n");

 unless (open (GIFFILE,"$fyle")) {

 print ("Cannot open file\n");

 next;

 }

 read (GIFFILE,$header,10);

 ($gifword,$giflevel,$xlo,$xhi,$ylo,$yhi)=

 unpack("a3a3C4",$header);

 if ($gifword ne "GIF") {

 print ("This is NOT a valid GIF file \n");

 } else {

 print ("GIF file - version $giflevel\n");

 print ($xhi*256+$xlo," pixels wide by ",

 $yhi*256+$ylo," pixels high\n");

 }

}

How do we achieve this? We open each file in turn. We use
read to read a specified number of bytes into a regular variable.
We unpack the (binary) bytes in that variable, specifying an
unpacking format. This puts the results into a list. We can then use
the unpacked data in our list.
unpack takes what can be quite a complex template (but we'll

start you with an easy one!) and gives the order and type of
values. Each may be followed by a number to specify how many.

Common value types:
a unstripped ASCII string
C unsigned character value
s signed short value
i signed integer value
f single precision floating point number

and you also have controls such as:
x skip forward a byte
X go back a byte
@ go to absolute byte position

seal% ystwyth.pl *.gif

======= beach.gif ========

GIF file - version 87a

195 pixels wide by 210 pixels high

======= fronds.gif ========

GIF file - version 87a

118 pixels wide by 90 pixels high

======= gorse.gif ========

This is NOT a valid GIF file

======= grass.gif ========

GIF file - version 87a

192 pixels wide by 157 pixels high

seal%

Figure 120

Running Perl program "ystwyth.pl".

Chapter 15 P212

178 Well House Consultants

Let's examine the heart of the code:
read (GIFFILE,$header,10);

($gifword,$giflevel,$xlo,$xhi,$ylo,$yhi)=

unpack("a3a3C4",$header);

10 bytes are read into $header, which is then split:

• 3 bytes into a string $gifword

• 3 bytes into a string $giflevel

• 1 byte (as an unsigned number) to $xlo

• 1 byte (as an unsigned number) to $xhi

• 1 byte (as an unsigned number) to $ylo

• 1 byte (as an unsigned number) to $yhi

Note that "a3" uses only one item from our list of variables, but
"C4" uses four. Everything except "a" uses one list item per
specifier.

It may sound rather obvious that the opposite of unpack is
pack. Remember, for length-dependant / non-binary applications,
functions like split and join and operators like . are an easier
solution.

15.11 Summary

Regular expressions comprise:

• literal characters

a to z A to Z 0 to 9 and some specials
\$ \^ \& * \. and others
\n \r \t \e \a \f control codes
\xa3 and \243 for hex and octal values

•any one character from a group

. any character
\S any non-white space character
\s any white space character
\w \W any word / non-word character
\d \D any digit / non-digit character
[a-k] any character from a to k
[^JP-Z] any character except J or P to Z

•anchors

^ match at start of line
$ match at end of line
\b \B match on / not on word boundary
\A match at start of string
\Z match at end of string

•counts

? * + (0 or 1) (0 or more) (1 or more) greedy
?? *? +? same counts (non-greedy)
{2,4} 2 to 4
{2,} 2 or more

P212 More on Character Strings

Learning to Program in Perl 179

•also

| or
() grouping
(?:) group but don't capture

•modifiers

i ignore case
g global
x spaces are comments
s single line mode
m multiline mode
o once only evaluation

Unless you use the non-greedy counts, Perl will match the
longest and left-most the first time you match. Subsequent
matches to the same string will return the next match if you've
specified global.

Matching groups are captured into variables $1, $2, etc. They
can also be saved into a list and used in the form \1 \2 etc in the
substitute operator.

If you don't use =~, Perl assumes you're matching against $_.
You can use the s operator to substitute rather than just match,
in which case you must give an output string and a third delimiter.
An e modifier on a substitute will cause the output to be executed
as a piece of Perl, the result of which will be substituted.
tr can be used to perform a character-by-character translation.

Chapter 15 P212

180 Well House Consultants

Exercise

Our example program "dmatch" includes a subroutine to match dates against five different regular expressions, but
only tests three of the formats.

a) Add examples to the program to test out the remaining two match patterns.
b) This example was originally written for American dates.
 Convert it where appropriate to match dates in the English form (e.g. 24/07/99 instead of 07/24/99).

Find all the lines in the "access_log" file relating to "catfish" and report them in the format shown in the sample.

Our example answer is catshow

Extend that exercise to convert the month into a month number.

Our example answer is cats2

Sample

graham@otter:~/profile/answers_pp> dmatch

 99 7 24 1

 1999 7 24 3

 99 7 24 5

graham@otter:~/profile/answers_pp>

Sample

graham@otter:~/profile/answers_pp> catshow

1998 Aug 28 - /index.html

1998 Aug 28 - /index.html

1998 Aug 28 - /perl/index.html

1998 Dec 11 - index.html

1998 Dec 11 - /index.html

graham@otter:~/profile/answers_pp>

Sample

graham@otter:~/profile/answers_pp> cats2

1998 08 28 - /index.html

1998 08 28 - /index.html

1998 08 28 - /perl/index.html

1998 12 11 - index.html

1998 12 11 - /index.html

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 181

16 HTML – Quick Reminder

HTML (HyperText Markup Language) is the text formatting
language that's used to describe the content of web pages.
Whilst your browser can read and display a simple text file, most
web page authors prefer to use HTML which lets them suggest
some formatting, supply links to other pages, etc.

Although you may be familiar with products such as FrontPage
to generate HTML, you'll need to know a little bit more about the
basic structure when you come on to our CGI or Web Client
modules; this section is a very brief review or introduction.

16.1 Tags

HTML directives are written in tags, between < and > signs.
The first word after the < character is the type of tag and may be
followed by a series of parameter = value pairs before the >
sign.

Many tags mark the start of an area, and a matching tag with a
/ character before the type name marks the end of the area. Thus
 Some text in Red

Tag and parameter names are not case sensitive, but some of
the parameter values are.

16.2 Structure of a page

Web pages comprise a block of HTML, usually written between
 <HTML> and </HTML>

tags.1

Within the HTML, the page is split into two parts.

• The Head (<HEAD> to </HEAD>) which contains information
that does not refer to the main display of the browser; for
example, details of the page author, information for search
engines and probably a title that will be used for bookmarking
and labelling the displayed window.

That Title will be between <TITLE> and </TITLE> tags.

• The body (<BODY> to </BODY>) which contains the text to be
displayed in the main browser window and other information
about how it is to be displayed and what else (e.g. images) is to
be displayed as well. Colours for background, text and links can
be specified in the <BODY> tag.

16.3 Special Characters and new lines

If you include a < sign in your text, the browser will think that
a tag is coming. In order to prevent this, you can specify

 <
instead. You must also use

1 You can omit these tags and the browser will usually be OK about it.

Chapter 16 module Q624

182 Well House Consultants

 &
if you want an ampersand in your text, and you can use a whole
range of other specials too, such as

 £
 ©
You'll be writing programs later on this course which may

include any text in their output, and you'll need to filter your output
to make these substitutions.

Within HTML, any (and multiple) white space characters are
replaced by single spaces, and lines are re-folded as necessary.
If you want to force a line break, you should use a

tag, and if you want to leave a gap to a new paragraph you should
use

 <P>
Don't eliminate new line characters completely, though; a few

\ns will be indispensable when you come to edit or read the text
of your page.

16.4 Some common tags

If you're looking for a "quick and dirty" display of a table of text
in a fixed width font, precede the text with <PRE> and end it with
</PRE>. This is the preformatted tag and within the block, the
compression of spaces is suppressed. It’s a very useful way of
keeping data in columns, but you still need to filter < and &
characters!

An <HR> tag gives you a horizontal ruling.
An <H1> </H1> pair lets you put in a headline size 1 (largest);

you can also use <H2> through <H6> in a similar way. and
 can be used to mark a part of your text as emphasised.
There are various other things one can do. See the "FONT"
example above as a sample.

Anything written between <CENTER> and </CENTER> tags
will be entered rather than left-justified in your browser's window.

If you want to specify a user-selectable link to another page,
use an anchor tag, for example:

 Go to last newsletter.
The HREF parameter can be any URL definition you choose –

an html file in the current directory in this example – but it could
call another directory, another site, or even refer to a different
communication protocol:

Download calender

module Q624 HTML – Quick Reminder

Learning to Program in Perl 183

Here's a page with some of these tags in use:

<HTML>

<HEAD>

<TITLE>An HTML Reminder</TITLE>
</HEAD>

<BODY BGCOLOR=WHITE TEXT=BLUE>

</BODY><CENTER>

<H3>A Reminder</H3>
</CENTER>

This page is a reminder of some of the tags that can be included
in a web page.
<P>

You may select from

The home page
Information about

Well House Consultants

<HR>

Graham Ellis

graham@wellho.net
</HTML>

16.5 Lists, Tables, Frames, Forms, Images etc

Within a page of HTML, you can specify an ordered list ()
or an unordered list (), ending with and
respectively. Individual list items should be prefixed with .

To give better control over formatting than a list, you may want
to arrange your data into a table. Tables are enclosed in <TABLE>
and </TABLE> tags; within tables, rows are enclosed in <TR> and
</TR> tags, and within each row, data elements are enclosed in
<TD> and </TD> tags. Many parameters can be specified to
tables to control their looks.

It's possible to divide the browser window into a series of
frames. In this case, you'll have multiple HTML documents. The
window as a whole will be defined in one document (a FRAMESET),
with each of the resulting frames being defined in its own piece of
HTML. Documents called up can then replace all the frames, or
one frame, or even open a new browser window. There's nothing
to stop you using frames with the other facilities you'll learn about
on this course, but in order to keep the learning focused we won't
be using them during this course.

Forms are a vital part of this course. They define a set of user-
enterable boxes between a <FORM> and </FORM> tag; within the
<FORM> tag an ACTION parameter gives the URL to be called
when the user indicates that the form has been completed. Don't
worry if you're not familiar with forms at the moment; we'll be
coming back and studying the elements in more depth later.

Executable content and graphic images (in the form of Java

Figure 121

HTML file as seen through Netscape

Chapter 16 module Q624

184 Well House Consultants

applets, and GIF and JPG images) can also be included on your
web page. They use the <APPLET> and </APPLET>, or the
 tag respectively. In each case, the tag requires you to give
a parameter specifying which applet is to be run or which image is
to be displayed, and if that applet or image isn't presently loaded
by the browser it will request it of the host.

16.6 Which HTML standard?

 Netscape and Microsoft have been locked in a browser war for
a considerable period, with both companies adding their own
enhancements to the HTML language at each release.

There are other browsers around such as Lynx and HotJava
too. And many users are quite contented to use an older browser
that does not support the very latest bells and whistles.

 Users can elect to turn Java off, change the font style and
background and resize their windows at will, and can even choose
not to show graphics.

Which, when all put together, means that any tags you use
within a web page can be considered to be just hints to the
browser which may or may not be acted on!

 You should be very careful to consider your target audience for
HTML, whether you're writing the HTML directly, having it gener-
ated by a software package such as FrameMaker or FrontPage,
or by a Perl program.

Suggestions:

• Stick to the HTML 3.2 standard, old though it is, for vital
pages

• Do not use Netscape or Microsoft extensions

• Do not rely on images to convey vital content

• If you must use Frames, also provide an alternative

• If you must use Applets, also provide an alternative

• Check your pages on Linux and Windows platforms

• Check your pages on a number of different browsers

• See how your page looks when scaled right up or down

 And don't assume that your users will have some special
plugin, or a high resolution screen, or a fast line to the internet just
because YOU do ;-)

In the majority of applications, users will be looking for profes-
sionally presented content and not magic bells and whistles. Even
restricting yourself as described above, you should have plenty of
scope to impress. Of course, if you're going to employ someone
with the skills to present an effective web site, they'll need Graphic
Design, Library Science, Journalism, Time and motion, marketing
and computer science skills as well as a thorough understanding
of the business being represented on the site. Subject for a
different course!

Learning to Program in Perl 185

17 Perl on the Web

The example Perl programs that you have written so far read
from STDIN and write to STDOUT. STDIN is often the keyboard
and STDOUT is often a window. Those Perl programs also make
use of environment variables.

You still use STDIN, environment variables and STDOUT when
you write Perl programs that run on web servers. It's just that the
environment and STDIN contain information about your user and
what he's written in a form; STDOUT gets sent back to the user.

The data formats for input and output differ from each other and
are amongst the topics we will cover on the Perl Advanced -
Network Application course.

The interface between the web and your application (written in
Perl on this course, though other languages can be used) is
known as the Common Gateway Interface (or CGI).

17.1 The HTML form

Although you could call up a program without filling in a form,
most applications do require the user input that a form provides.

The illustration below shows a sample form:

If you want to study HTML, our Web
Presence course covers that topic.
For this course, you need to note:

•The action URL which says where
the Perl program is.

•The various field names --- we used
"cat" and "dog".

•The method -- we used Get on this
course.

Figure 122

How a Perl program interacts with the web

to and from disk files

processes and
resources

WEB BROWSER

STDIN

STDOUT

%ENV

PERL PROGRAM

Form or other
information

Response page

and other

WEB SERVER

Figure 123

A sample HTML form, right. The HTML code, below.

<HTML>

<HEAD>

<TITLE>

Demonstration of CGI

for Perl Programming Course

</TITLE>

</HEAD>

<BODY BGCOLOR=white text=blue link=green vlink=red>

<CENTER><H1>Sample Form</H1>

<FORM method=get action="http:/cgi-bin/pub/pp/demo.pl">

Please enter first data field <INPUT name=cat>

Please enter second data field <INPUT name=dog>

Then press <INPUT TYPE=submit Value="here!">

</FORM>

</HTML>

Chapter 17 P221

186 Well House Consultants

17.2 Inputs

When you complete our form (the URL on this course is:
 http://seal/pub/pp/demoCGI.html)

and press the submit button, the contents of the form and the URL
to call up, are uploaded to the server.

In this instance, this URL is
 http://seal/cgi-bin/pub/pp/demo.pl

at which point we have placed a Perl program.
Using the GET method, the fields from the form arrive in the

format
 var=value&var=value&.......

in the variable
 $ENV{"QUERY_STRING"}

and they can be extracted (in this example) using:
 ($cat,$dog) = /^cat=(.*)&dog=(.*)$/;

URL encoding

What if the user enters an = sign, or an & into the form?
Of course, it can't be uploaded as that character. After all, how

would our Perl program tell field ends and data apart? Therefore

• special characters become %xx (where xx is a hex code)

• space characters become + characters

The following code takes (as an example) the first field you
entered into the form and removes the URL encoding:
 $catcode=$cat;

 $catcode=~ tr/+/ /;

 $catcode=~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C",hex($1))/eg;

17.3 Outputs

You have now read form input into your CGI program, which is
running on the web server. It's a Perl program, therefore you can
do anything you like (subject to the permissions given by the
administrator, etc.) on that system! How do you get results back to
the user? You simply print (or printf) to STDOUT ...

Headers

When outputting through the CGI interface, you must generate
a header as well as the HTML page, and the format of the header
must be correct.

If you make an error in the header, or if the Perl program has a
syntax error, your user will get a server error message:

 "The Server encountered an internal error or
 misconfiguration, and was unable to complete
 your request"
If your reply page is in HTML, send
 Content-type: text/html

followed by two new-line characters, since a blank line is required
to finish the header.

The reply page

You may then send the text of your page.
You should send a complete page, from <HTML> to </HTML>.

P221 Perl on the Web

Learning to Program in Perl 187

17.4 All together!

Here's the complete Perl program and the outcome viewed on
a browser that uses the CGI that we've quoted from above:

#!/usr/local/bin/perl

Reads a form filled in by the user ...

turns it into a web page which is then

displayed!

get the fields

$_ = $ENV{"QUERY_STRING"};

($cat,$dog) = /^cat=(.*)&dog=(.*)$/;

decode one of them to show special char

handling!

$catcode=$cat;

$catcode=~ tr/+/ /;

$catcode=~ s/%([a-fA-F0-9][a-fA-F0-9])/

pack("C",hex($1))/eg;

send a reply back!

print <<"PAGE" ;

Content-type: text/html

<HTML><BODY BGCOLOR=white text=black>

The Strings the perl program received were:

First field: $cat
Second field: $dog<P>

and decoded, the first field becomes $catcode<P>

</BODY></HTML>

PAGE

Figure 124

The HTML displayed

Chapter 17 P221

188 Well House Consultants

17.5 The power of using Perl on the Web

The Common Gateway Interface that we've introduced in this
module provides a wrapper around Perl that allows user inputs
from a form and outputs to a browser. It's not a part of the Perl
language itself, but rather it's an application of Perl. There's a wide
variety of uses that Perl can be put to on the web through CGI and
other uses. For example:

• Other elements available on a form

• Linking a series of forms into a complete application

• Telling who's using your CGI program

• Sending an email from your CGI program

• Modules available to help you

• Uploading and downloading files

• Providing a search engine for a small site

• Looking up information from other systems

• Handling images through CGI

• Using your browser as an interface to already-written
applications

• Using the web to submit long tasks and reap the results later

• Crawlers and Spiders

• Sending a series of reply pages

• Sending a dynamic / changing page

• Reading back from a Java applet

• Sending data from CGI to a Java applet

• Security aspects

• How to debug and maintain web sites using Perl

17.6 A real example of Perl on the Web

Here's a real example of Perl in use on a web site. In this
example, the application is to filter out and search for matching
data in a very large file so that the user of the web site is only
presented with the information he requires. The data file is in fact
a web server's access log file. We've used the Perl script to filter
records from six days of accesses totalling 86,000 records.

The example contains some meaty regular expression handling
to handle the incoming record format, and it keeps its reply page
in a separate template file (nice.htp) so that the program and the
web page can be maintained by different staff members with
different skills. The program simply grabs the .htp file and substi-
tutes all strings %\w+% with a result from %fill in the Perl
program.

After you start the program, it analyses the data file and offers:
a) A form in which you can select the records and fields to display

if you wish
b) A report of all the domain names whose accesses are recorded

in the log file, with links to allow the user to select specific hosts
This is quite a long initial page; here are only parts of it:

P221 Perl on the Web

Learning to Program in Perl 189

Once a form has been completed, the user will be presented
with requested results and another form (already pre-filled with
what he has just chosen so that he can refine the search).

Chapter 17 P221

190 Well House Consultants

And if the user selects a link to choose all the records from a
particular host, then those records are indeed presented in full.

P221 Perl on the Web

Learning to Program in Perl 191

Here's the Perl program:

#!/usr/bin/perl

use Time::Local;

Version 0.2 - Analysis of log files

initvars();

%form = collect_form();

$limitrecs = 500; $nrec = 0;

open (FH,$source);

Search through all records in the data file that's being analysed

while ($line = <FH>) {

 %info = get_ncsaparts($line);

 next unless ($info{status}) ;

If a selection form has been completed, look for records we need

 if ($form{select} or $form{host}) {

 $selected = 1;

 foreach $field (@names) {

 $form{$field} and

 $info{$field} !~ /$form{$field}/i and

 $selected = 0;

 }

 if ($selected) {

 $nrec++;

 if ($nrec <= $limitrecs) {

 my $thisline;

 $nexttime = $info{when};

 $info{when} = $info{when} - $previoustime;

 $previoustime = $nexttime;

 foreach $field("when",@names) {

 ($form{"_$field"} or ! $form{select})

 and $thisline .= $info{$field}." ";

 }

 $stuff .= "$thisline
";

 }

 $visitors{$info{host}}++;

 }

If no selection form has been completed, summarise all hosts

 } else {

 $summaryhost = $info{host};

 if ($summaryhost =~ /[a-z]$/) {

 $summaryhost =~ s/^[^.]+/xxx/;

Chapter 17 P221

192 Well House Consultants

 } else {

 $summaryhost =~ s/\.\d+$/.xxx/;

 }

 $nrec++;

 $visitors{$summaryhost}++;

 }

 }

All records read. Report on the number of matches and any truncation

$stuff .= ($nrec>=$limitrecs and ($form{select} or $form{host})) ?

 "REPORT TRUNCATED TO $limitrecs out of $nrec
":

 "Reported on $nrec records
";

Set fields for display on next form if necessary

unless ($form{select}) {

 foreach $field(@show) {

 $form{"_$field"} = 1;

 }

}

($me) = ($0 =~ m!.*/(.*)!);

$fill{myname} = $me;

$fill{source} = $source;

Make up a table of all hosts in case user wants to select by host

$stuff .= "<table>";

foreach $v (sort {reverse($a) cmp reverse($b)} keys %visitors) {

 $v1 = $v;

 $v1 =~ s/xxx//;

 $stuff .= "<tr><td>$v</td>".

 "<td>$visitors{$v}</td></tr>";

 }

$fill{stuff} = "$stuff</table>";

Make up form through which to offer the user next options

foreach $field (@names,"when") {

 $checked = $form{"_$field"} ? " CHECKED" : "";

 $fill{formbody} .= "<tr><td>limit $field to</td><td>".

 "<input name=$field value=\"$form{$field}\"></td>".

 "<td><input name=_$field type=checkbox$checked> display</td>".

 "</tr>";

 }

Read and complete template, send it out to browser

open (FH,"nice.htp");

read (FH,$html,-s "nice.htp");

$html =~ s/%(\w+)%/$fill{$1}/g;

P221 Perl on the Web

Learning to Program in Perl 193

print ("content-type: text/html\n\n$html");

##

sub get_ncsaparts {

 my ($inline) = @_;

 my %record;

Extract parts from an NCSA extended log file record (format is next 4 lines)

202.187.80.126 - - [09/Feb/2003:00:37:31 -0800]

"GET /forum/3935408201.html HTTP/1.1" 200 7250

"http://www.google.com/search?hl=en&ie=UTF-8&oe=UTF-8&q=text+file+and+php"

"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"

 if (my @parts = ($inline =~

 /^(\S+) # IP Address or host name

 \s+\S+\s+\S+\s+ # Ignore rarely used security flds

 \[(\d+)\/(\w+)\/(\d+): # Date

 (\d+):(\d+):(\d+) # Time

 \s+([-+]?\d\d)\d\d\]\s+ # time offset

 "(\w+)\s+(\S+) # method and URL

 \s+\S+"\s+ # Ignore HTTP level

 (\d+)\s+([-0-9]+)\s+ # Status and size

 "(\S+)"\s+ # Referer

 "(.+)"\s*$ # Browser

 /x)) {

 for (my $k=0; $k<@names; $k++) {

 $record{$names[$k]} = $parts[$k];

 }

 $record{when} = timegm($record{second},

 $record{minute},$record{hour},

 $record{day},$mnames{$record{month}},

 $record{year}%100) - $record{houroff} * 3600;

 } else {

 $record{status} = 0;

 }

 return %record;

 }

sub collect_form {

 my %ret;

 if ($ENV{REQUEST_METHOD} eq "POST") {

 read (STDIN,$qs,$ENV{CONTENT_LENGTH});

 $ret{rqm} = "POST";

 } else {

 $qs = $ENV{QUERY_STRING};

 $ret{rqm} = "GET";

 }

 my @els = split(/&/,$qs);

 foreach (@els) {

 my ($nam,$val) = split(/=/);

 $val =~ tr/+/ /;

 $val =~ s/%(..)/pack("C",hex($1))/ge;

Chapter 17 P221

194 Well House Consultants

 $ret{$nam} = $val;

 }

 return %ret;

 }

sub initvars {

 $source = "access_log_15feb" ;

 @names = ("host","day","month","year","hour","minute",

 "second","houroff","method","url"

 ,"status","size", "referer","browser");

 @show = ("when","host","url","status","size", "referer");

 %mnames = (Jan => 0, Feb => 1, Mar => 2, Apr => 3,

 May => 4, Jun => 5, Jul => 6, Aug => 7,

 Sep => 8, Oct => 9, Nov => 10, Dec => 11);

 }

And the template file:

<html>

<head><title>Site access - %myname%</title></head>

<body bgcolor=white>

<h1>Analysis of %source%</h1>

<form method=POST action=%myname%>

<table border=1>%formbody%

<tr><td>and</td><td><input type=submit name=select value=go></td></tr>

</table></form>

Select here to reset the script

%stuff%

<hr>

Copyright Well House Consultants

</body>

</html>

P221 Perl on the Web

Learning to Program in Perl 195

17.7 Summary

Perl programs are often used on the web to provide server-side
interaction. Inputs still come from the command line, environment
variables and STDIN and are still written out to STDOUT.

In the example we saw in this section, data that a web user
entered into a form was read by our Perl program from an environ-
ment variable. It was encoded in the form
name=value&nextname=nextvalue

and many special characters had been replaced by three-char-
acter hex codes. This is known as URL encoding.

After processing and accessing data, files, etc, our perl / web
application wrote out a header (the format MUST be correct):
Content-type: text/html

followed by a blank line and then a page of HTML.
This method of using a browser to access a program rather

than just a data file is known as CGI or the Common Gateway
Interface.

Chapter 17 P221

196 Well House Consultants

Exercise

There's a form at
 http://seal/pub/xxx/demoCGI.html (where "xxx" is your account name)
View the form, view the source and work out the field names and the name of the Perl program that it calls. You

should also note that there will be a copy of the "stdcode" file available at ../stdcode.uk when you’re running your
program via the web.

Write a Perl program to collect the data from the form and match the string. You may place the program into the
correct directory on the server by typing
 place xxxxxxx (where "xxxxxxx" is the name of the Perl program)

Our example answer is demo.pl

Test by filling in and submitting your
form. Work with the student beside you.

Ask him to visit your page; you visit his.

Learning to Program in Perl 197

18 System Dependencies

18.1 The Philosophy

If you've learnt the Java language, you'll be aware that it is
designed to run exactly the same no matter what piece of hard-
ware or underlying operating system is in use. You'll also be aware
of two other things:

• It's very hard indeed to do things like find out how much disk
space is in use and perform systems administration tasks in
Java.

• Even then, some Java programs only run on some
machines. Do you know which release of Java is it? Does it
use the Microsoft extensions? Etc ...

Perl sets out to give you the flexibility to do whatever you like,
and it assumes you know what you're doing. You don't have the
system administration limits that Java applies. Indeed, Perl is
becoming a favourite language for systems administration work on
Linux and on Windows NT, as well as on Unix.

And, an even bigger bonus, Perl is remarkably portable!
Of the topics covered thus far, only the section that covered the

environment around your Perl program differed greatly between
systems, and even there, code can be written that includes both a
line to make it execute as a program on Linux and Unix, and a
name which means it will work on Win32 systems.

How is it so portable?

Perl originated from the Unix world and you'll find that it's very
"Unix-ish" in how it does things. But that Unix-ness is part of the
language itself.

Therefore, the authors of implementations for Macintosh and
Windows systems had (and took advantage of) the ability to make
it do the same thing on the PC.

Let's see an example of that:
If you're a Solaris1 guru, you'll know that to translate a host

computer from a name to an IP address, you would look at

• /etc/nsswitch.conf to tell you whether to look at

• /etc/hosts

• A NIS map (domain from /etc/defaultdomain)

• A NIS+ table

• The Domain Name Service (via /etc/resolv.conf)

Err ... too much like hard work, isn't it?
It's all been built into Perl for a long time, so you don't even need

to know the stuff above. Instead, you just call
 gethostbyname("walrus");

1 Sun’s version of Unix

Chapter 18 P214

198 Well House Consultants

And -- here's the beauty -- it looks at all the files for you. On
Solaris, it'll use the sequence above. On other Unixes, the
sequence will vary a bit. On Windows NT it will be very different ...
but still you'll just call
 gethostbyname("walrus");

Of course, the news isn't 100% good. Where the operating
system has capabilities beyond what other operating systems
have, Perl will tend to support it, and then ... code author beware.
You may get a whole load of nulls and undefined's back from other
operating systems.

We've grouped together in this section some of the facilities
which you should be careful of using if you intend to write portable
code.

Finding out what system your script is running on

There's a special variable $^O (or $OSNAME) which tells
you what the operating system is. There's also a Config module
which provides a very large amount of extra information

#!/usr/local/bin/perl

info_more - config

use Config;

print "Operating System: $^O\n";

$OSNAME

foreach $name (sort keys %Config) {

 printf "%10s %s\n",$name,$Config{$name};

 }

Let's look at some more of the features of Perl that will make
your program system dependent:

18.2 Shell access

You want to include an operating system command within your
Perl program? You can do so using backquotes!
 `cp one.txt one.bak`;

will copy a file on Linux and Unix systems, from "one.txt" to
"one.bak".

This is also very useful for utilities which are not built in to Perl
 `tar cf /tmp/dbn.tar .`;

But what happens to any output on STDOUT?
The ` returns the STDOUT from the commands you run, so in

the examples above, any output is lost. Assign it to a variable, and
you have the text to manipulate. Simply print it, and it's seen on
the screen.

#!/usr/local/bin/perl

back - system dependent backquotes

$directs = `du -sk /export/home/www/*`;

print "Disc Utilisation\n";

print "================\n";

seal% info_more

Operating System:solaris

 Author

CONFIGtrue

Date $Date

 Header

Id $Id

Locker

 Log $Log

Mcc Mcc

PATCHLEVEL3

RCSfile$RCSfile

Revision$Revision

SUBVERSION0

Source

State

afs false

alignbytes8

aphostname

etc ...
useposixtrue

usesafetrue

usevforkfalse

 usrinc/usr/include

 uuname

vi

voidflags15

xlibpth/usr/lib/386 /lib/386

zcat

Figure 125

Running Perl program "info_more" (only a portion of the
output is shown).

P214 System Dependencies

Learning to Program in Perl 199

print `df -k`;

print "Web directories > 1 Mb\n";

print "======================\n";

@lines = split(/\n/,$directs);

foreach (sort {$b <=> $a} @lines) {

 s/$/\n/;

 last if ($_<1000);

 print ;

}

Variables are expanded within backquotes prior to the execu-
tion of the command in just the same way that they would be
expanded within double quotes.

Alternative delimiters are available. Use the qx operator to indi-
cate "quote" and "execute".
 $back = qx!$first *\n!;

Here documents are available if you want to place a large block
of commands within your Perl program
 <<`SHELL`

 echo "Disc Utilisation at the present time" > /tmp/$$

 df -k >> /tmp/$$

 rusers -a >> /tmp/$$

 SHELL

 ;

seal% back

Disc Utilisation

================

Filesystem kbytes used avail capacity Mounted on

/dev/dsk/c0t3d0s0 61615 56730 4824 93% /

/dev/dsk/c0t3d0s6 432839 379122 53285 88% /usr

/proc 0 0 0 0% /proc

fd 0 0 0 0% /dev/fd

/dev/dsk/c0t3d0s7 422223 408704 13097 97% /export/home

swap 147448 76 147372 1% /tmp

/dev/dsk/c0t0d0s0 192783 19090 173501 10% /extra/disc0.slice0

/dev/dsk/c0t0d0s4 481983 74851 406651 16% /extra/disc0.slice4

/dev/dsk/c0t0d0s5 481983 11687 469815 3% /extra/disc0.slice5

/dev/dsk/c0t0d0s6 963895 766802 195487 80% /extra/disc0.slice6

/dev/dsk/c0t0d0s7 6404166 5558119 782006 88% /extra/disc0.slice7

Web directories > 1 Mb

======================

6639/export/home/www/website.version.4

6518/export/home/www/website

6265/export/home/www/pub

4820/export/home/www/website.version.3

3129/export/home/www/website.version.2

2474/export/home/www/website.version.1

1912/export/home/www/perl

1210/export/home/www/wedding

seal%

Figure 126

Running Perl program "back".

Chapter 18 P214

200 Well House Consultants

18.3 System database enquiries

We mentioned getting the host information at the start of this
section. If you want to do something but it's not an obvious one-
liner

• someone's probably done it already and

• their code's probably available to you

This applies especially to accessing system databases. The
following functions are built in to Perl:
 gethostbyname

 gethostbyaddr

in a scalar context, these convert from name to IP address or vice
versa. In a list context, they return much more information:

#!/usr/local/bin/perl

hostinfo

print "+++++ Checking on 192.168.200.130\n";

@ipdata = (192,168,200,130);

$ippacked = pack("C4",@ipdata);

@about = gethostbyaddr($ippacked,2);

prhost();

print "+++++ Checking on sealion\n";

@about = gethostbyname("sealion");

prhost();

sub prhost {

 @ip = unpack("C4",$about[4]);

 print "Main name: $about[0]\n";

 print "Other names: $about[1]\n";

 print "Address Type: $about[2]\n";

 print "Length: $about[3]\n";

 @ip = unpack("C4",$about[4]);

 print "IP address: ",join(".",@ip),"\n";

 }

Although the introduction seemed pessimistic and too system-
dependent, Perl hides all the "look at this file or that file" stuff so,
wherever possible, it works on any operating system.

Many of the following, though, are system-dependent. Other
system enquires are already covered, too (this isn't a full list)

getpwnam log in by name

getpwuid log in by user id

getprotoname protocol by name

getprotonumber protocol by number

getnetbyname network by name

getnetbyaddr network by address

getppid parentprocess id

seal% hostinfo

+++++ Checking on 192.168.200.130

Main name: lecht

Other names: www.wellho.co.uk

Address Type: 2

Length: 4

IP address: 192.168.200.130

+++++ Checking on sealion

Main name: sealion

Other names: www.wellho.com

Address Type: 2

Length: 4

IP address: 192.168.200.127

seal%

Figure 127

Running Perl program "hostinfo".

P214 System Dependencies

Learning to Program in Perl 201

#!/usr/local/bin/perl

userinfo

($name,$pwcode,$uid,$gid,$quota,$comment,$gcos,

$home,$logprog) = getpwnam("graham");

print ("User id is $uid\n");

print ("Group id is $gid\n");

print ("home directory is $home\n");

print ("log in program is $logprog\n");

18.4 How Perl helps on crossplatform requirements

The topics we've looked at so far in this module have shown
you how to write your Perl to be as host operating system inde-
pendent as possible, and have taken the attitiude of "warning you
off" certain elements of the language if at all possible. There are
some important times, though, where Perl can be used as a
powerful tool to assist you with cross-platform applications.

Text files – end-of-line characters

When you're typing in a plain text file, be it in notepad or edit on
a Windows machine, vi or kedit on a Linux or Unix system, or
simpletext on a Mac, you'll press the [Enter] key at the end of each
line of typing for a new line. Did you realise that your operating
system actually puts different control characters into your text on
each of the three different groups of platforms?

Windows \r\n Carriage Return, Line Feed
Mac \r Carriage Return
Linux / Unix \n Line Feed
That's all very well (and automatically taken care of) when

you're running in a single operating system environment, but when
you're using a mixture of systems, some strange results can
occur. Some applications (notepad for example) simply can't cope
with input that has the wrong delimiters.

Here's a convertor program, written in Perl, that takes a file
named on the command line, and converts its end-of-line charac-
ters to the Linux / Unix standard:

#!/usr/bin/perl

open (FH,$ARGV[0]);

read (FH,$buffer,-s $ARGV[0]);

$buffer =~ s/\r\n/\n/g;

$buffer =~ s/\r/\n/g;

print $buffer;

Output from this program is to STDOUT, so that the user can
redirect it to a file, or to another application, as appropriate.

seal% userinfo

User id is 2000

Group id is 1999

home directory is /export/home/

graham

log in program is /bin/csh

seal%

Figure 128

Running Perl program "userinfo".

Chapter 18 P214

202 Well House Consultants

If you wish to run a program such as this to produce output
that's suitable for a PC or Mac, take care with the order of your
substitute commands; we recommend that you use the above
program and add before the print function:

$buffer=~s/\n/\r/g; for Mac
or $buffer =~ s/\n/\r\n/g; for Windows

Handling Microsoft Word and Excel files in Perl

Good news. There are modules supplied with the Perl distribu-
tion from ActiveState that allow you to read in and handle
Microsoft Word, Excel and other files. The modules actually make
use of some of the Microsoft dll files, so you'll need to run your Perl
program on a Windows box that has the appropriate Microsoft
product installed.

Why would you want to handle a Word file in Perl?
Here's an example of Perl in use as "Glueware". An Estate

Agent produces his detail sets on his office PC, using Microsoft
Word. Into the details, he adds photographs of the property for
sale (from his digital camera or scanner, at a higher resolution so
that he can print out quality details), and floor plans which he
enters in to his handheld iPAQ when surveying the property, and
come in a wmf (Windows Metafile) format.

In order to upload his details to the Web, he needs to extract the
text from the Word document (so that the details can be in a
different format on the web site, and sorted by price of house),
and reformat the images so that they're gifs or jpgs (changing their
resolution).

What follows is a simplified version of the program that's used
on the PC that has Word installed; the Image conversion is done
using "Advanced Batch Convertor" which is a PC application, and
the output is a plain text file which is then uploaded to the Estate
Agent's web site using a "file" box on the form, and there it is
further interpreted. For ease of support / debugging, the file for
upload is hex encoded so that it's all printable characters which
can be easily manuipulated.

Perl program - extracting from a Word document ready for upload!

use Win32::OLE;

use Win32::OLE::Enum;

print "Name of Word document: ";

chomp ($doc = <STDIN>);

$document = Win32::OLE -> GetObject($doc);

print "Name of upload file: ";

chomp ($upload = <STDIN>) ;

open (FH,">$upload");

 print "Extracting Text ...$document \n";

 $paragraphs = $document->Paragraphs();

 $enumerate = new Win32::OLE::Enum($paragraphs);

 while(defined($paragraph = $enumerate->Next()))

P214 System Dependencies

Learning to Program in Perl 203

 {

 $style = $paragraph->{Style}->{NameLocal};

 print FH "+$style\n";

 $text = $paragraph->{Range}->{Text};

 $text =~ s/[\n\r]//g;

 $text =~ s/\x0b/\n/g;

 print FH "=$text\n";

 }

 for ($k=2; $k<10; $k++) {

 $prog = "\"C:\\Program\ Files\\Advanced\ Batch\ Converter\\abc.exe\"";

 print ("Name of image file to use: ");

 chomp ($imgname = <STDIN>);

 last unless ($imgname);

 $instruct = $outstruct = "$imgname";

 #$outstruct = "/convert=X$k.gif";

 if ($instruct =~ /wmf$/) {

 $also = "/resize=(640,0,1)";

 $outfile = "X$k.gif";

 } else {

 $also = "/resize=(640,0,1)";

 $outfile = "X$k.jpg";

 }

 print "Converting $instruct ...\n";

 $result = `$prog $instruct $also /convert=$outfile`;

 open (FHI,$outfile);

 binmode FHI;

 read (FHI,$buffer,-s "$outfile");

 $buffer =~ s/(.)/sprintf("%02x",ord($1))/sge;

 $buffer =~ s/(.{1,68})/=$1\n/g;

 print FH "+pic$k\n=$imgname\n";

 print FH "+pic_$k\n";

 print FH "$buffer\n";

 }

 close (FH);

 print "Job completed. Press [return] to exit ";

 $n = <STDIN>;

Note that in order to be able to use these "Win32" modules, you
need to be runnng Perl on a PC with the particular application
installed. Because the modules actually make use of the files
within the Microsoft application, the example above will only run
on a machine that has Word installed, and the following (which
uses an Excel spreadsheet) requires Excel to be available to Perl.

use Win32::OLE;

$file = "C:\\temp\\MyTest.xls";

$excel = Win32::OLE->GetActiveObject('Excel.Application');

unless($excel)

{

 $excel = new Win32::OLE('Excel.Application', \&QuitApp)

 or die "Could not create Excel Application object";

}

Chapter 18 P214

204 Well House Consultants

$excel->{Visible} = 1;

$excel->{SheetsInNewWorkBook} = 1;

$workbook = $excel->Workbooks->Add();

$worksheet = $workbook->Worksheets(1);

$worksheet->{Name} = "Directory listing";

@files = glob('*');

$range=$worksheet->Range('A1:C1');

$range->{Value} = ['Filename', 'Size', 'Time'];

my $cellrow = 2;

foreach $file (@files)

{

 my ($size,$mtime) = (stat($file))[7,9];

 $range=$worksheet->Range(sprintf("%s%d:%s%d",'A',$cellrow,'C',$cellrow));

 $range->{Value} = [$file,$size,scalar localtime $mtime];

 $cellrow++;

}

$workbook->SaveAs($file);

sub QuitApp

{

 my ($object) = @_;

 $object->Quit();

}

This example creates a new Excel spreadsheet, titles the
columns "filename", "size" and "time", and puts details of all files
in the current directory into that spreadsheet.

18.5 Summary

Perl sets out to give you maximum flexibility, so it's up to you to
ignore features like backquotes that are system-dependent.

Built-in routines like gethostbyname, although they look to be
very Unix-ish, are in fact implemented as widely as possible.
$OSNAME (or $^O) allows you to check on which system you're

running and take appropriate steps

Learning to Program in Perl 205

19 More than Simple Lists
and Hashes!

When you created your own classes earlier on, your instance
variables might have been references to scalars, or references to
lists, or references to hashes.

And if you held the instance variables themselves in a list or in
a hash, you in effect had a two-dimensional list.

19.1 Multidimensional arrays

Multidimensional lists

In Perl 5 you can write two-dimensional lists directly, just like
other programming languages by using two sets of square
brackets.

#!/usr/local/bin/perl

deal - deal a pack of cards

@pack = (1..52);

@shpack = shuffle(1, @pack);

print "dealing: \n";

for ($k=0;$k<13;$k++) {

for ($j=0;$j<4;$j++) {

print $hand[$j][$k] = $shpack[$nc++]," ";

}

print "\n";

}

print "hands: \n";

for ($j=0;$j<4;$j++) {

for ($k=0;$k<13;$k++) {

print $hand[$j][$k]," ";

}

print "\n";

}

###

sub shuffle {

my ($mode,@incards) = @_;

 return @incards unless ($mode);

srand;

for ($k=52;$k;){

$card = int rand $k;

push @out,$incards[$card];

$incards[$card]=$incards[--$k];

}

return @out;

}

seal% deal

dealing:

14 6 16 33

5 23 19 1

47 17 22 28

30 29 52 39

37 25 12 3

43 45 24 35

21 36 18 42

34 31 48 32

38 51 26 9

15 27 4 7

44 11 50 46

13 40 8 20

10 49 41 2

hands:

14 5 47 30 37 43 21 34 38 15 44 13 10

6 23 17 29 25 45 36 31 51 27 11 40 49

16 19 22 52 12 24 18 48 26 4 50 8 41

33 1 28 39 3 35 42 32 9 7 46 20 2

seal%

Figure 129

Running Perl program "deal".

Chapter 19 P217

206 Well House Consultants

Notice that there's still no need to tell Perl how big the list will
be. It's automatically sized and expanded!

Internally, Perl's using a list of lists so there's no need for the
two-dimensional array to be rectangular. Here's an example of
dealing seven cards to each of four players and placing the rest as
a "stock" in a fifth hand:

#!/usr/local/bin/perl

deal2 - deal a pack of cards and leave stock

@pack = (1..52);

@shpack = shuffle(1, @pack);

print "dealing: \n";

for ($k=0;$k<7;$k++) {

 for ($j=0;$j<4;$j++) {

 print $hand[$j][$k] = $shpack[$nc++]," ";

 }

 print "\n";

}

my (@temp) = @shpack[$nc..51];

$hand[4] = \@temp;

print "hands: \n";

for ($j=0;$j<4;$j++) {

 for ($k=0;$k<7;$k++) {

 print $hand[$j][$k]," ";

 }

 print "\n";

}

print "stock: \n";

for ($k=0;$k<24;$k++) {

 print $hand[4][$k]," ";

 }

print "\n";

##

sub shuffle {

my ($mode,@incards) = @_;

 return @incards unless ($mode);

srand;

for ($k=52;$k;){

 $card = int rand $k;

 push @out,$incards[$card];

 $incards[$card]=$incards[--$k];

 }

return @out;

}

seal% deal2

dealing:

1 20 16 11

42 7 27 50

35 17 29 48

45 19 5 30

22 38 26 9

34 23 24 37

25 15 14 44

hands:

1 42 35 45 22 34 25

20 7 17 19 38 23 15

16 27 29 5 26 24 14

11 50 48 30 9 37 44

stock:

21 10 28 49 6 12 3 32 52 47 46 2

31 39 36 18 40 41 13 4 43 8 51 33

seal%

Figure 130

Running Perl program "deal2".

@pack

@temp

P217 More than Simple Lists and Hashes!

Learning to Program in Perl 207

Mixing the dimensions

Although that first example used a list of lists, there's no reason
why you can't use

• Hashes of lists

• Lists of hashes

• Hashes of hashes

as appropriate

19.2 Something more complex

You're not restricted to the conventional!
Let's say that you want to access information about host

computers based on any one of their names or their IP address.

Design first

Firstly, let's design the record for each computer. A simple list
will do. The first element being the IP address, the second being
the real name of the computer and then subsequent elements
being any aliases.

Then let's create a hash, with entries for the IP addresses and
for each name, with those entries all pointing to the list that holds
the data itself.

No matter whether the user enters an IP address or a name, we
can look it up in the hash.

Setting up the structure

Let's look at the code to create the hash:
 while ($record = <SOURCE>) {

 chop $record;

 my (@fields) = split(/\s+/,$record);

 foreach $item(@fields) {

 $db{$item} = \@fields;

 }

 }

Each line is read in and split into "@fields" -- a my list -- in other
words, the name "@fields" will be released each time the while
loop completes, so each time through it will be a new list.

The address of each "@fields" list, though, is stored into the
hash %db. Indeed, it's stored several times since this is a multi-
keyed application.

When we show you the complete code at the end of this
section, you'll notice that we have other code present to remove
comments and check that keys really are unique!

Referencing the structure

To keep the example short, we've just asked the user to enter
any key for which we look up the data and exit.

Chapter 19 P217

208 Well House Consultants

.netprint "item of interest: ";

chop ($ask = <STDIN>);

@extract = @{$db{$ask}};

print "Info: @extract\n";

We've simply copied the information out of the list that's held in
the %db hash, then printed the whole of that copy list.

Although you may be a little surprised that you're allowed to
write things like this ... why not?? Literally, "the extract list is to
become a copy of the list at $db of $ask".

Here is an alternative way of extracting information:
 print ${$db{$ask}}[0],"\n";

Reading as before ... "scalar element 0 of the list at $db of
$ask".

If that's getting a bit tricky, here's an alternative notation:
 print $db{$ask}->[0],"\n";

or I could even write
 print $db{$ask}[0],"\n";

after all, we created our original structure in a new way, but it can
be followed through just like a normal two-dimensional array!

Finally, here are lines that print the whole list relating to one
particular key, and the number of elements in that list:
 print @{$db{$ask}},"\n";

 print $#{$db{$ask}}+1,"\n";

Let's put the whole together and run it.

#!/usr/local/bin/perl

multikey - hash of lists

keyed on IP and on names

open (SOURCE,"systems") ||

die "no system info\n";

while ($record = <SOURCE>) {

 chop $record;

 $record =~ s/#.*//;

 $record =~ s/^\s*//;

 next unless ($record);

 my (@fields) = split(/\s+/,$record);

 foreach $item(@fields) {

 if ($db{$item}) {

 print "conflict on $item\n";

 $err ++;

 next;

 }

 $db{$item} = \@fields;

 }

 }

$err && die

seal% multikey

item of interest: lecht

Info: 192.168.200.130 lecht www.wellho.net

Figure 131

Running Perl program "multikey" showing partial output.

seal% multikey

item of interest: lecht

Info: 192.168.200.130 lecht www.wellho.net

other ways of extracting:

192.168.200.130

192.168.200.130

192.168.200.130

192.168.200.130lechtwww.wellho.net

3

seal%

Figure 132

Running Perl program "multikey".

P217 More than Simple Lists and Hashes!

Learning to Program in Perl 209

"data not suitable for this structure\n";

print "item of interest: ";

chop ($ask = <STDIN>);

@extract = @{$db{$ask}};

print "Info: @extract\n";

print "other ways of extracting:\n";

print ${$db{$ask}}[0],"\n";

print $db{$ask}->[0],"\n";

print $db{$ask}[0],"\n\n";

print @{$db{$ask}},"\n";

print $#{$db{$ask}}+1,"\n";

19.3 Grouping in Perl

By this point, you may be getting confused between round
brackets and square brackets, braces and <> pairs. There are
only three types of brackets in the ASCII character set but, in
languages like Perl, you need to group elements together for
many more than just three reasons. So brackets have to mean
different things at different times.

The following table shows you various uses of () [] {} and
<> in Perl. You'll probably be familiar with most of them by now,
but the odd one might be new.

() Round brackets
1. Precedence in expressions

e.g. $temp = ($other - 32) / 9 * 5;
2. Force list context

e.g. ($var) = split /\s+/,$in,2 ;
3. Tagging ("interesting bits") in regular expressions

e.g. $ENV{"QUERY_STRING"} =~ /(.*)=(.*)/;

[] Square brackets
1. An element in a list

e.g. $table[16]++;
2. Reference to an anonymous list

e.g. @chinese = (["Soup","Salad","Seaweed"], ["Curry","Kung Po","Chow Mein"]);
3. A list slice

e.g. @start = @info[0..3];
4. Regular expression – any one of

e.g. /^[A-Za-z]+$/;

{} Curly braces
1. An element in a hash

e.g. $name = $table{"name"};
2. A block of code

e.g. { $i = 16; $k = 25; }
3. Delimiting a variable name

e.g. print ("It weighs ${pounds}lbs\n");
4. general counts in regular expressions

Chapter 19 P217

210 Well House Consultants

e.g. /\.\w{2,6}$/;

<> Less than and greater than
1. Read from a file handle

e.g. @lines = <FH>;
2. Read from matching file names

e.g. @files = <*.html>;

The use of square brackets to give you a reference to an anony-
mous list may come as a surprise. You might have expected to
write:
 $abc = \(40,60,75);

but that will generate a list of references and not a reference to a
list. Thus (in a scalar context) $abc will be assigned the value 3.

What you want to write instead is:
 $abc = [40,60,75];

19.4 Interpreting a complex reference to a variable

If you look at complex variable names with lots of $s, @s, %s, \s,
{}s, []s and ->s in them and wonder how to read that, here are
some tips:
1. Start at the extreme left. If the variable name starts with a

$ it's a scalar
% it's a hash
@ it's a list
If it starts with a \, then it's a scalar which is:
\$ a reference to a scalar
\@ a reference to a list
\% a reference to a hash
For references to anonymous variables, you can also have:
\{ a reference to a hash
\[a reference to a list
\(a list of references

2. Curly braces immediately after a %, $ or @ are used to delimit
the variable name.

3. An extra leading $, or a ->, mean "referenced by" or
"contents of", and the -> can be left out if it comes between
subscript elements.

4. A [] subscript means a list member, and a {} subscript
means a hash member.

You might want to work through some examples, perhaps with
a pencil and paper to draw diagrams.
 @{$db{$ask}}

The list which is referenced by the element of the hash %db
whose key is in the scalar $ask.
 ${$db{$ask}}[0]

The scalar which is in element 0 of the list referenced by the
element of the hash %db whose key is in the scalar $ask. The
following who examples refer to the same scalar:
 $db{$ask}->[0]

 $db{$ask}[0]

P217 More than Simple Lists and Hashes!

Learning to Program in Perl 211

19.5 Design MATTERS

If you're going to get involved in applications that require this
sort of thing ...

 START with the design of your data and
 USE a class of METHODS
The integrity of the data structure is vital. By isolating access in

a package, you can reduce the danger of user code causing
damage, as well as making the user code easier to follow.

19.6 Summary

You can create two-dimensional lists ... and lists of hashes, and
hashes of lists, and other more exotic structures if you wish. An
example we studied was a double-keyed hash of lists.

It is vital that you design your application carefully if you are
going to use such structures, and you are strongly encouraged to
use an object-oriented design and implementation.

Chapter 19 P217

212 Well House Consultants

Exercise

Read the file "rgb.txt" (each line consists of 4 values) into a two-dimensional list. Print out all the entries which have
a value over 239 in the third position.

Our example answer is rgb

For Advanced Students
You may prefer to examine our sample answer rather than write your own unless you had considerable program-

ming experience prior to this course!

• Read the "access_log" file and create a hash with keys being the name of each host computer. Have each hash
element point to a list of access records.

• Print out the first and last access record for each host in alphabetic order.

Our example answer is wstruct

Sample

graham@otter:~/profile/answers_pp> ./rgb

255 250 250 snow

248 248 255 ghost white

248 248 255 GhostWhite

245 245 245 white smoke

245 245 245 WhiteSmoke

etc.

Sample

aviemore

- - [15/Jul/1998:08:32:55 -0400] "GET /perl/interact/wash.html HTTP/1.0" 200 686

- - [02/Feb/1999:11:52:20 +0000] "GET /perlman/READMEs/README HTTP/1.1" 200 4716

catfish

- - [28/Aug/1998:09:47:39 -0400] "GET /index.html HTTP/1.0" 200 1476

- - [11/Dec/1998:09:27:25 -0500] "GET /index.html HTTP/1.0" 200 1476

clam

etc.

Learning to Program in Perl 213

20 Handling Dates and Time

"Which is the most recent file of?"
"How long has this program been running?"
"What will the date be three weeks from today?"
Common questions handled in Perl requiring comparisons of

date and time. Hardly an easy job with the tools you've seen thus
far. Of course, Perl can make it easy!

20.1 So far

File status operators

You've written
 $modded = -M "subtwo"

to tell you how long ago the file "subtwo" was last modified

#!/usr/local/bin/perl

dt1 - file last modified

print "file: ";

chop ($name = <STDIN>);

$modded = -M $name;

print "$name was last altered

$modded days ago\n";

That figure is reported in decimal days.
The following options are also available:

 -Adays since file was last accessed

 -Cdays since header last changed1

stat on a file

If you stat a file, you can get back the same information, but
in seconds from Midnight, 1st January 1970 (this time is also
known as the epoch)

#!/usr/local/bin/perl

dt2 - file last modified

print "file: ";

chop ($name = <STDIN>);

@finfo = stat($name);

print "$name was last altered at $finfo[9]\n";

seal% dt1

file: subtwo

subtwo was last altered 9.45079861111111 days ago

seal%

Figure 133

Running Perl program "dt1".

1 not WIN32

seal% dt2

file: subtwo

subtwo was last altered at 1053071981

seal%

Figure 134

Running Perl program "dt2".

Chapter 20 P216

214 Well House Consultants

Via system commands

You've learnt how you can get the current date and
 time by using system commands. You've also been told not to do

 this if you want portable code!

#!/usr/local/bin/perl

dt3 - current date and time

$current = `date`;

print "Current date and time is $current";

$day = `date +%A`;

print "Today is $day";

20.2 How Perl handles dates and times

You've already seen a range of units and facilities ... and there's
more to come. But if you work with dates and times, you'll want to
convert them to more convenient units than days, months, years,
hours, minutes and seconds. In other words, to easily answer a
question like:

 "What will the date and time be three weeks, two days and
seven hours from today?"

It’s easy!

• Get the current date and time in whatever units

• Convert to seconds from 1.1.19701

• Do your arithmetic

• Convert back to whatever units you want to report in

In other words, all dates and times are reduced to seconds from
the epoch, and converters are provided to work each way.

Amazingly, you can also work in seconds before the epoch, so
the scheme is valid from 1904 through to 2038 before nasty things
start happening.

Other date information available

stat2

time() current time and date
$^T (or $BASETIME)time the script started
Finally, you can set the times that a list of files were last

accessed and the time they were last modified using the utime
function.
 utime ($acc,$mod,@files);

In Linux and Unix terms, this is the equivalent of the "touch"
command although empty files are not created as you give a new
name.

seal% dt3

Current date and time is Sun Jan 31 19:03:50 GMT 1999

Today is Sunday

seal%

Figure 135

Running Perl program "dt3".

1 for the Macintosh, operating systems prior to OSX, the time in seconds is from
1.1.1904; with OSX, time is compatible with other systems - i.e. from 1.1.1970

2 covered earlier

P216 Handling Dates and Time

Learning to Program in Perl 215

20.3 Convertors

Convert from epoch seconds into "human readable" form:

 gmtimeepoch seconds to Greenwich Mean Time
 localtime epoch seconds to local time

Let's look forward six weeks and 100 weeks:

#!/usr/local/bin/perl

dt4 - look forward weeks

print "How many weeks? ";

chop ($weeks = <STDIN>);

$now = time();

$forward = $now + $weeks * (60 * 60 * 24 * 7) ;

treport("Today it is ",$now);

treport("In $weeks weeks it will be ",$forward);

###

sub treport {

my ($text,$timing) = @_;

($sec,$min,$hour, # second, minute, hour

 $mday,$month,$year, # day of month, month

(0-11), year

 $wday,$yday,$dst) = # day of week, day of

year, daylight

 localtime($timing);

printf ("%s %d/%d/

%d\n",$text,$mday,$month+1,$year+1900);

}

You'll notice:

• Months come back as 0 to 11, not 1 to 12

• Years are returned from 1900. Watch years after 1999!

• We can tell the day of the week

• We can tell whether daylight saving is in effect

In a scalar context, localtime and gmtime will return a string
containing the date in a nice format

Convert from human readable form to epoch seconds

Not such a common requirement, so you need to use a module
which is supplied as standard with the Perl distribution
 use Time::Local;

and you can then use function
timelocalto convert local time to seconds
timegm to convert GM Time to seconds

seal% dt4

How many weeks? 20

Today it is 16/5/2003

In 20 weeks it will be 3/10/2003

seal% dt4

How many weeks? -200

Today it is 16/5/2003

In -200 weeks it will be 16/7/1999

seal%

Figure 136

Running Perl program "dt4".

Chapter 20 P216

216 Well House Consultants

#!/usr/local/bin/perl

dt5 - compare a stated date and time with now!

use Time::Local;

print "When do you want? ";

chop ($timeline = <STDIN>);

($day,$month,$year,$hour,$min) =

 ($timeline =~

 /^\s*(\d+)\/(\d+)\/(\d+)\s+ # date

 (\d+):(\d+)\s*$/x); # time

$now = time();

$then = timegm(0,$min,$hour,$day,$month-

1,$year);

$diff = $then -$now;

@tsplit = splittime($diff,60,60,24,7);

treport("It is ",$now);

print "You looked ",($diff>0)?"forward ":

 "backward ",

 "$tsplit[4] weeks ",

 "$tsplit[3] days ",

 "$tsplit[2] hours ",

 "$tsplit[1] minutes \n";

###

sub treport {

my ($text,$timing) = @_;

($sec,$min,$hour, # second, minute, hour

 $mday,$month,$year, # day of month, month

(0-11), year

 $wday,$yday,$dst) = # day of week, day of

year, daylight

 gmtime($timing);

printf (

 "%s %d/%d/%d %02d:%02d\n"

 ,$text,$mday,$month+1,$year+1900,

 $hour,$min);

}

###

sub splittime {

my ($val,@list) = @_;

$val = abs($val);

foreach $factor (@list){

 push @rv,$val%$factor;

 $val/=$factor;

 }

push @rv,int($val);

return @rv;

}

seal% dt5

When do you want? 28/12/79 06:15

It is 16/5/2003 08:04

You looked back 1220 weeks 0 days

1 hours 49 minutes

seal% dt5

When do you want? 09/08/03 11:30

It is 16/5/2003 08:05

You looked forward 12 weeks 1 days

3 hours 24 minutes

seal%

Figure 137

Running Perl program "dt5".

P216 Handling Dates and Time

Learning to Program in Perl 217

20.4 Handling centuries

Whilst it is easily possible to write code that will work with old
data for years starting 19xx, and also for current 20xx data, you
need to take care as you program.

In particular, please note:

• gmtime and localtime return the year since 1900 so that
you'll get back the number "103" for the year 2003, for example.
If you want a two-digit year, you could format it using:

 $yr = sprintf("%02d",$yrfromgmtime % 100);
or for a four-digit year:

 $yr = sprintf("%4d",$yrfromgmtime + 1900);

• timegm and timelocal take a two-digit year code. If the
number you pass in is 00 to 37, it's assumed you mean 2000 to
2037. Enter a number from 39 to 99, and Perl will use 1939 to
1999.

20.5 Elapsed time sleep

All of the functions and codes above work with dates and time.
What if you want to refer to a number of seconds within your
program?
 sleep(10)sleep 10 seconds
 sleep() sleep "forever"
What's the point in sleeping forever? Until an external signal is

received from another process. We'll look at that more on our
advanced courses.

alarm

Sets an alarm clock, so that a signal goes off after a given
number of seconds. You'll study the full mechanism on the Perl
Advanced course, but here's a taster if you just have a simple
requirement:

#!/usr/local/bin/perl

chivvy - hurry the user up!

@waken = (20,15,10,10,5);

$SIG{"ALRM"} = "comeon";

print "Enter your name: ";

until ($yousaid or not $waken[$kp])

 {

 alarm ($waken[$kp]);

 $yousaid = <STDIN>;

 $kp++;

 }

$yousaid ?

 print "You entered $yousaid":

 print "You failed to respond in time\n";

###

seal% chivvy

Enter your name:

40 seconds left ...

25 seconds left ...

15 seconds left ...

5 seconds left ...

0 seconds left ... You failed to respond in time

seal% chivvy

Enter your name: Graham Ellis

You entered Graham Ellis

seal% chivvy

Enter your name:

40 seconds left ...Graham Ellis

You entered Graham Ellis

seal%

Figure 138

Running Perl program "chivvy".

Chapter 20 P216

218 Well House Consultants

sub comeon {

$at += $waken[$kp];

print "\n",60-$at," seconds left ... ";

}

• the %SIG is an array of signals, into which is placed the name
of subroutines to be called when a particular signal is
received - in this case, ALRM

• alarm is used to set an interval timer. Perl will break out of
any waiting statement when the timer goes off, firstly
performing the "comeon" subroutine, then continuing with the
next statement.

• the <> operator knows that it hasn't returned any of your
typing if a signal occurred, so the text remains in the input
buffer.

P216 Handling Dates and Time

Learning to Program in Perl 219

20.6 Summary

All date mathematics are handled in epoch seconds. Such
numbers are given directly to you by the stat function, by the
time function, and in the $^B variable.

You can convert from epoch seconds to date and time using
localtime or gmtime, and from date and time to epoch seconds
using timelocal or timegm from the Time::Local module.

Epoch seconds work fine from 1904 to 2038, but you must take
care with conversions, etc, to ensure that the programs you write
are cross-century compliant.

An alarm clock can be set up to signal back to you after a
certain interval, allowing your process to sleep or wait. This also
allows you to time out users who are slow in replying to a prompt.

Chapter 20 P216

220 Well House Consultants

Exercise

Write a program to print out the time elapsed between each web site access from the machine "catfish".
(You might like to start from our example program "wrt2", or your equivalent.)

Our example answer is webgap

Sample

graham@otter:~/profile/answers_pp> webgap

28/Aug/1998:09:47:39

seconds gap: 655

0 days 0 hours 10 minutes 55 seconds

28/Aug/1998:09:58:34

seconds gap: 67

0 days 0 hours 1 minutes 7 seconds

28/Aug/1998:09:59:41

seconds gap: 9073563

105 days 0 hours 26 minutes 3 seconds << Is this correct? Yes!!! Why?
11/Dec/1998:09:25:44

seconds gap: 101

0 days 0 hours 1 minutes 41 seconds

11/Dec/1998:09:27:25

graham@otter:~/profile/answers_pp>

Learning to Program in Perl 221

21 Practical Example –
Perl in use

This module takes a practical programming problem that was
posed to us, and provides a solution in Perl. We have intentionally
used a wide range of fundamental and intermediate Perl topics in
our answer, but we have not used anything that's really obscure or
advanced. Our intent is to provide you with a case study in which
you can find snippets of code showing how Perl's features are
used and how they work together.

21.1 The requirement

Introduction

A large department has a number of employees, each of whom
are to attend one of a series of courses of their choice. There are
a limited number of places on each course, and some courses are
more popular than others. Although we would love to give
everyone their first choice, we can't!

Our requirement is to place people onto courses in such a way
that there are as few "downgrades" as possible. We define a
downgrade as someone having their second choice rather than
their first, or their third choice rather than their second (i.e.
someone who is given a place on his third choice has been down-
graded twice).

Input and output

Notice that it's very important in the specification of a problem
to start off asking "what do we start with?" and "where to we end
up?".

We begin with a file containing everyone's name, and a list of
the courses that they rate, starting with their first preference.
Here's the file:

antonia Perl XML PHP Tcl/Tk MySQL

barbara Tcl/Tk ASP Ruby Java

cherry Perl Java Ruby MySQL

delia XML PHP Java ASP

ethel MySQL Perl Tcl/Tk ASP

florence Ruby PHP Java ASP

gloria XML Perl Tcl/Tk MySQL

hazel PHP Python Perl Ruby ASP

iris Perl MySQL Java Tcl/Tk

jenny XML Perl Ruby ASP

kerry Perl Tcl/Tk Ruby MySQL

leane PHP Python ASP Perl Java

margaret XML Perl Ruby MySQL Tcl/Tk

nina Tcl/Tk Perl ASP Ruby

olivia MySQL Python ASP PHP

Chapter 21 module P772

222 Well House Consultants

petra XML Tcl/Tk ASP Perl Ruby

queenie Ruby Perl ASP MySQL

rita PHP ASP Ruby Perl

sally Tcl/Tk Perl XML MySQL

tina Tcl/Tk Ruby Java

uva MySQL Perl Java PHP

venus Java Perl Ruby ASP

wendy Perl Tcl/Tk ASP MySQL

xena Java Perl PHP ASP XML

yollanda Ruby MySQL Tcl/Tk

zoe Ruby ASP Perl PHP

adam Tcl/Tk Perl Python MySQL

barry Python XML Java Perl PHP

charles Perl Ruby MySQL Tcl/Tk

david Perl Tcl/Tk Java

ed Ruby Perl Java PHP

fred MySQL Perl Java XML

graham Java Perl Tcl/Tk

harry PHP Python Java

ivan Ruby Java Perl Tcl/Tk MySQL

john PHP XML Java Perl

ken Tcl/Tk Python Java Perl

len Perl Java MySQL Ruby

morris Perl Java PHP Tcl/Tk

nigel PHP Python Java Perl

orpheus MySQL Ruby Tcl/Tk XML

peter PHP Java Perl

quentin Tcl/Tk Perl PHP Ruby

rupert Java Python MySQL

steve Tcl/Tk Perl PHP Ruby

tommy Perl Java XML

ulsyees Java PHP Perl

victor Ruby Perl Tcl/Tk MySQL

william Ruby Perl PHP

xavier PHP Java Perl

yuri XML PHP Perl Tcl/Tk

zachary MySQL Java Tcl/Tk

We're looking for an output that tells us who is on which course,
and indicates how many downgrades he has taken to be there.
We've enhanced the output to include a review of the incoming
data (how many people want each course, number of places avail-
able, etc.), and also to report on the operation of the program as it
proceeds.

Here is our complete output:

Incoming trainees: 52

Different courses requested: 9

Places per course: 6

Total places available: 54

16 expressed interest in ASP

module P772 Practical Example – Perl in use

Learning to Program in Perl 223

0 had top choice of ASP

28 expressed interest in Java

5 had top choice of Java

22 expressed interest in MySQL

6 had top choice of MySQL

23 expressed interest in PHP

8 had top choice of PHP

42 expressed interest in Perl

10 had top choice of Perl

9 expressed interest in Python

1 had top choice of Python

24 expressed interest in Ruby

8 had top choice of Ruby

26 expressed interest in Tcl/Tk

8 had top choice of Tcl/Tk

14 expressed interest in XML

6 had top choice of XML

...Improved to -16

...Improved to -14

....Remains at -14 (only achieved -20)

...Remains at -14 (only achieved -21)

...Remains at -14 (only achieved -23)

..Remains at -14 (only achieved -18)

...Remains at -14 (only achieved -17)

...Remains at -14 (only achieved -16)

...Remains at -14 (only achieved -17)

...Remains at -14 (only achieved -17)

 Adam is on Tcl/Tk - their choice 1

 Antonia is on Perl - their choice 1

 Barbara is on ASP - their choice 2

 Barry is on Python - their choice 1

 Charles is on Perl - their choice 1

 Cherry is on Java - their choice 2

 David is on Perl - their choice 1

 Delia is on XML - their choice 1

 Ed is on Ruby - their choice 1

 Ethel is on MySQL - their choice 1

 Florence is on PHP - their choice 2

 Fred is on MySQL - their choice 1

 Gloria is on XML - their choice 1

 Graham is on Java - their choice 1

 Harry is on PHP - their choice 1

 Hazel is on Python - their choice 2

Chapter 21 module P772

224 Well House Consultants

 Iris is on MySQL - their choice 2

 Ivan is on Ruby - their choice 1

 Jenny is on XML - their choice 1

 John is on PHP - their choice 1

 Ken is on Python - their choice 2

 Kerry is on Perl - their choice 1

 Leane is on Python - their choice 2

 Len is on Java - their choice 2

 Margaret is on XML - their choice 1

 Morris is on Perl - their choice 1

 Nigel is on PHP - their choice 1

 Nina is on Tcl/Tk - their choice 1

 Olivia is on Python - their choice 2

 Orpheus is on MySQL - their choice 1

 Peter is on PHP - their choice 1

 Petra is on XML - their choice 1

 Queenie is on Ruby - their choice 1

 Quentin is on Tcl/Tk - their choice 1

 Rita is on ASP - their choice 2

 Rupert is on Python - their choice 2

 Sally is on Tcl/Tk - their choice 1

 Steve is on Tcl/Tk - their choice 1

 Tina is on Tcl/Tk - their choice 1

 Tommy is on Perl - their choice 1

 Ulsyees is on Java - their choice 1

 Uva is on MySQL - their choice 1

 Venus is on Java - their choice 1

 Victor is on Ruby - their choice 1

 Wendy is on ASP - their choice 3

 William is on Ruby - their choice 1

 Xavier is on PHP - their choice 1

 Xena is on Java - their choice 1

 Yollanda is on Ruby - their choice 1

 Yuri is on XML - their choice 1

 Zachary is on MySQL - their choice 1

 Zoe is on ASP - their choice 2

Measure of success in place people - -14 points

ASP Barbara * Rita * Wendy ** Zoe *

Java Cherry * Graham Len * Ulsyees Venus Xena

MySQL Ethel Fred Iris * Orpheus Uva Zachary

PHP Florence *Harry John Nigel Peter Xavier

Perl Antonia Charles David Kerry Morris Tommy

Python Barry Hazel * Ken * Leane * Olivia * Rupert *

Ruby Ed Ivan Queenie Victor William Yollanda

Tcl/Tk Adam Nina Quentin Sally Steve Tina

XML Delia Gloria Jenny Margaret Petra Yuri

In this final table, each "*" represents a downgrade point. In our
sample data, no one expressed a top preference for ASP, and
only Barry preferred Python above anything else, so you see a lot
of downgrades on those courses. There are only two free places
anywhere in the plans, so someone's not going to be satisfied.

module P772 Practical Example – Perl in use

Learning to Program in Perl 225

The plans

This is a surprisingly difficult task. Have you ever struggled to
get a whole lot of people into groups or classes, or a number of
items into a limited number of shopping bags each with limited
capacity, and where you don't want to mix the cleaning chemicals
with the food? It's very easy to place the first few items and people,
but then it starts getting awkward when you start re-arranging.
Very rarely are you truly satisfied with the result, or have it optimal.
How on earth are we going to automate this?

We'll write our application to read in our data into memory by
using a Perl hash of lists so that we can keep coming back to it.

We'll get a list of all the people who are looking for courses, and
we'll go through that list in a random order, placing each person on
his top choice of course that's still got places available. Anyone
who's unfortunate enough to have had all his/her choices filled up
already is placed on a list for later placement.

Once all people who can be given a course of their choice are
placed, we simply take the people we couldn't place and assign
them to a remaining vacancy.

We then work out the score – the number of downgrades for our
solution.

Next, we'll try swapping over every pair of trainees in turn, and
see if that improves the score. If it does, we leave the change in
place. If not, we swap them back. We keep doing this until no
further improvement can be made by any two-way swap.

The results probably look good, but are not necessarily the best
that can be achieved. This is a "linear programming" problem, and
it's rather like climbing a mountain and always taking the steepest
track to get up quickly. You may get to the top, find there's no way
up any more, and look across to see another, higher peak of the
same mountain.

In practice, our initial placement algorithm has given us a pretty
good start ("well up the mountain already"), so we might not be too
far out. But in order to ensure best placement, our program
remembers the solution and the score that it has found, and
repeats the whole process, with the names in a different, re-
randomised order, to see if it can do better. This loop runs 10
times.

Chapter 21 module P772

226 Well House Consultants

The detail

Here's our program, with line numbers to help the tutor (and
you) track down elements that we have described above.

 1 #!/usr/bin/perl

 2

 3 # Course placer. Demonstration program showing the use of

 4 # many Perl fundamentals, written and Copyright Well House

 5 # Consultants Ltd. Phone +44 (0) 1225 708225

 6

 7 $coursemax = "@ARGV" || 6;# maximum trainees per course

 8 open (FH,"requests") or# file of course requests

 9 die "No incoming file of place requests\n";

 10

 11 # set up list of names, hash of requirements and hash of courses

 12 ##

 13

 14 while (<FH>) {

 15 my ($name,@want) = split (/[\s,]+/);

 16 $request{$name} = \@want;

 17 foreach $course (@want) {

 18 $c{$course}++;

 19 $tops{$course}+=0 ;

 20 }

 21 $tops{$want[0]}++ ;

 22 $ntrainees++;

 23 }

 24

 25 # Our input data is now in

 26 # %c hash of course names, containing number of

 27 # expressions of a preference for each

 28 # %topshash of coures names, containing a count of

 29 # top preferences

 30 # %request hash of lists of preferences. The main data

 31 # for the forthcoming sections

 32 # Above data is NOT altered during iterations

 33

 34 # List out incoming stats. This section does not alter the

 35 # data.

 36

 37 print "Incoming trainees: $ntrainees\n";

 38 print "Different courses requested: ",$nc=scalar(keys %c),"\n";

 39 print "Places per course: $coursemax\n";

 40 print "Total places available: ",$nc*$coursemax,"\n\n";

 41 foreach $course (sort keys %c) {

 42 print "$c{$course} expressed interest in $course\n";

 43 print "$tops{$course} had top choice of $course\n\n";

 44 }

 45

 46 ($ntrainees > $nc * $coursemax) and die "Not enough places\n";

 47

 48 # place people one by one on to their most available course

module P772 Practical Example – Perl in use

Learning to Program in Perl 227

 49 ###

 50

 51 # Put code from here down in a loop to keep trying to get

 52 # a better result; otherwise, we may end up with a result

 53 # that cannot be improved but is in an iteration "cul de sac"

 54

 55 $iterationcount = 10; # number of iterations to run

 56

 57 for ($iteration=0; $iteration<$iterationcount; $iteration++) {

 58

 59 my %assign;

 60

 61 # Take all the trainees (in a random order) and place each in

 62 # turn on their highest choice course that's still available

 63

 64 @names = shuffle(keys %request);

 65

 66 foreach $person (@names) {

 67 my @want = @{$request{$person}};

 68 $placed = 0;

 69 foreach $try (@want) {

 70 if ($assign{$try} > ($coursemax-1)) {

 71 next;

 72 } else {

 73 $oncourse{$person} = $try;

 74 $assign{$try}++;

 75 $placed = 1;

 76 last;

 77 }

 78 }

 79 # If none of their choices is available, store them for the

 80 # next stage - see if you can place other people on a

 81 # choice thay have made first!

 82

 83 unless ($placed) {

 84 # warn ("Can't place $person yet\n") ;

 85 push @filler,$person;

 86 }

 87 }

 88

 89 # spread the unsatisfied around amongst courses that are slack!

 90 # Start with most popular courses for better results later?

 91 # But this will lead to some dreadful slack courses!

 92 # Doesn't make much difference if courses are really tight

 93 ###

 94

 95 while (1) {

 96 foreach $course (sort {$a <=> $b} keys %c) {

 97 next if ($assign{$course} > ($coursemax-1));

 98 $force = pop @filler;

 99 last unless ($force);

 100 $oncourse{$force} = $course;

Chapter 21 module P772

228 Well House Consultants

 101 $assign{$course}++;

 102 }

 103 last unless ($force);

 104 }

 105

 106

 107 # print out the initial assignments and scores for this iteration

 108 # if you're in debug mode; also get a score. 0 is a perfect

 109 # score (everyone on their top choice) and 1 is taken off that

 110 # score for each time someone is moved one place down their list

 111 # of preferences

 112

 113 # At this point, %oncourse is a hash of people containing the

 114 # name of the course they are provisionally selected to attend.

 115 # %assign contains the course names and the number of people

 116 # assigned to each. So far, it is only used to avoid overbooking

 117 # of a course (already done), but it might be useful later as

 118 # we enhance the algorithm.

 119

 120 $value = reportscore (0); # change to 1 to test improvement loop!

 121

 122 # See if we can improve scores by doing a crossover swap

 123 ##

 124

 125 # keep trying this loop until no further improvements are made

 126

 127 do {

 128 $swapped = 0;

 129 $| = 1; # do not buffer the following output

 130 print "."; # for trace / debug / interest purposes

 131 for ($k=0; $k<@names; $k++) {

 132 for ($j=$k+1; $j<@names; $j++) {

 133

 134 $temp = $oncourse{$names[$k]};

 135 $oncourse{$names[$k]} = $oncourse{$names[$j]};

 136 $oncourse{$names[$j]} = $temp;

 137

 138 $newvalue = reportscore(0);

 139 # print "$newvalue, $value ";

 140

 141 if ($newvalue > $value) {

 142 # print "*";

 143 $value = $newvalue;

 144 $swapped++;

 145 next;

 146 } else {

 147 $temp = $oncourse{$names[$k]};

 148 $oncourse{$names[$k]} = $oncourse{$names[$j]};

 149 $oncourse{$names[$j]} = $temp;

 150 }

 151 }

 152 }

module P772 Practical Example – Perl in use

Learning to Program in Perl 229

 153 } while ($swapped);

 154 $|=0;# turn buffereing back on

 155

 156 # "reportscore" works out the score; with a parameter of 2, it also

 157 # sets up a hash called final that is keyed on course names, and each

 158 # element contains a list of people on that course

 159

 160 $value = reportscore (2);

 161 # tabulate(); # do this if tracing

 162

 163 # If this is the best iteration so far, or the fist iteration, store it

 164

 165 unless ($iteration) {

 166 $bestvalue = $value -1;

 167 }

 168 if ($bestvalue < $value) {

 169 print "Improved to $value\n";

 170 $bestvalue = $value;

 171 %bestcourse = %oncourse;

 172 } else {

 173 print "Remains at $bestvalue (only achieved $value)\n";

 174 }

 175

 176 undef %oncourse;

 177 undef %final;

 178

 179 } # End of 10 x iteration loop

 180

 181 # Restore the settings that we saved during the best iteration, recalculate

 182 # the scores and provide a full report of who is on what course.

 183

 184 %oncourse = %bestcourse;

 185 reportscore (1);

 186 reportscore(2);

 187 tabulate();

 188

 189

 190

 191 ##

 192

 193 sub reportscore {

 194 my ($trace) = $_[0];

 195 $skipper = 0;

 196 foreach $p (sort keys %oncourse) {

 197 $chnum = 0;

 198 for ($i=0; $i<=$coursemax; $i++) {

 199 $chnum++;

 200 last if ($request{$p}[$i] eq $oncourse{$p});

 201 $skipper--;

 202 }

 203 printf ("%10s is on %10s - their choice %d\n",ucfirst($p),

 204 $oncourse{$p},$chnum) if ($trace == 1);

Chapter 21 module P772

230 Well House Consultants

 205 $pstack = $p." ".("*" x ($chnum-1));

 206 push @{$final{$oncourse{$p}}},$pstack if ($trace == 2);

 207 }

 208 print "Measure of success in place people - $skipper points\n"

 209 if ($trace == 1);

 210 return $skipper;

 211 }

 212

 213 ##

 214

 215 sub shuffle {

 216 my @input = @_;

 217 my @output;

 218 while (@input) {

 219 $posn = int(rand(@input));

 220 push @output,splice(@input,$posn);

 221 }

 222 return @output;

 223 }

 224

 225 ##

 226

 227 sub tabulate {

 228 foreach $course (sort keys %final) {

 229 printf "%-6s ",$course;

 230 foreach $student (sort @{$final{$course}}) {

 231 printf "%-10s",ucfirst($student) ;

 232 }

 233 print "\n";

 234 }

 235 }

 236

 237 __END__

 238

 239 =head1The place_people program

 240

 241 This is a program which allows you to place people on their

 242 preferred course and uses an I<Iteration technique> to improve

 243 on its first results is everyone cannot be given their

 244 first choice.

 245

 246 Inputs:

 247

 248 =over 4

 249

 250 =item 1

 251

 252 A file called B<requests> containing each persons name and

 253 list of course ordered by their preference

 254

 255 =item 2

 256

module P772 Practical Example – Perl in use

Learning to Program in Perl 231

 257 A command line parameter which is the maximum number of

 258 people that can be taken on each course

21.2 Plain Old Documentation (POD)

You'll notice that we've commented our program fairly fully, and
also included POD documentation at the end. Comments are for
future programmers who have to access the code, and POD docu-
mentation is for the user. Here's how we extract the user
documentation:

$ pod2text place_people

The place_people program

 This is a program which allows you to place people on their preferred

 course and uses an *Iteration technique* to improve on its first results

 is everyone cannot be given their first choice.

 Inputs:

 1 A file called requests containing each persons name and list of

 course ordered by their preference

 2 A command line parameter which is the maximum number of people that

 can be taken on each course

$

Other pod utilities could be used to output in man page, post-
script, web page or other forms.

21.3 Possible enhancements

As with any short demonstration program, there are plenty of
ideas and enhancements that are possible and probably advis-
able; here are just some of them:

On data validation

It would be sensible to check that the requested data file
contains only the names of valid courses. If course names come
in the wrong case (e.g. Perl not perl), our program really should
cope with it!

We should check that we don't have two lines for the same
person, or two people with the same name.

On data input and output

We should allow course names to include spaces and some
form of comment to be added in to the requests file.

On extending the application

We should allow for courses of different capacities. This would
probably be done via another data file that listed course and
capacities. References to $coursemax in our code would all be
replaced by references to a hash. The total capacity calculation
we do early on would become slightly more complex.

Chapter 21 module P772

232 Well House Consultants

Web interface input, input from an SQL database, output to a
web page, output back to a database, output to the email system
to let everyone know what they're on ... Perl is excellent glueware!

On the optimising algorithm

The placement of people who can't be given any course they
have asked for could be modified. You might want to balance
course sizes, or do the very best you can, or cancel slack courses.

In linear programming terms, you could add three-way swaps
and see if you get any improvements from that. You could also do
level swaps, that don't improve the score, in the hope that they will
let you then find an improvement elsewhere in the possible solu-
tion matrix.

There are some efficiency issues. The current program will
keep trying to improve on a score of "0" which is clearly impos-
sible, and it will also try to improve on a score of "1" if one course
is one place overpopular. We should test for at least some of these
cases. We might also be able to find a way of knowing that no
swapping is going to improve anything without having to go
through a complete cycle of our loop and drawing a blank. The
issues in this paragraph affect running speed only, and if it's fast
enough for you anyway, do you really want to bother?

Learning to Program in Perl 233

22 Libraries and Resources

There's a very wide range of modules, associated programs,
documentation, web sites and so on and so forth, available that
can help you make the most of Perl. This part of the training
course is a road map of some of these resources.

Although the Perl language itself is very stable, web sites (in
particular) seem to come and go. We checked all the URLs in this
section as we wrote it, and we try to update them frequently, but
this section of the course will go out of date much quicker than the
rest.

22.1 Standard Perl modules

The Perl language has grown out of all recognition since Larry
Wall wrote the first version in 1988. In the early days, most
features that were added were "core" facilities that merged natu-
rally into the language itself. Progressively, as Perl grew, added
features became more and more specialised, and these days
most new features are added as "perl modules", which are sepa-
rate code from the main language itself, but included with the main
distribution.

If you want to use a standard module, you'll load it in with the
use statement (just like you load in your own modules), and then
make use of the facilities it provides via method calls (if the module
uses OO principles), subroutine calls, global and/or exported
variables.

Pragmata

Some standard modules are "Pragmatic"; a module that's a
pragma affects the compilation phase of your program and (indi-
rectly) may also affect the execution. Pragma modules can be
recognised by the fact that their names are lower case; they're
invoked using use and can be switched back off using no.
Example:

#!/usr/bin/perl

use integer;

$first = 17 / 7;

no integer;

$ second = 17 / 7;

print "first is $first\n";

print "second is $second\n";

$./wholenumbers

first is 2

second is 2.42857142857143

$

Figure 139

The integer pragma forces whole number calculations

Chapter 22 P219

234 Well House Consultants

Perhaps the most commonly used pragma is strict, which
changes the rules concerning what the compiler considers to be
legal code. By default, Perl is a language that assumes you know
what you're doing and it allows many dubious coding practices.
This is fine for a smaller program, but as a program grows into a
bigger project you want to impose more rules. Apart from anything
else, this helps protect you against coding accidents.

What does strict reject?

• Any variables which are not predeclared (using my or our),
or are predefined by Perl, fully qualified (using :: notation)
or imported.

• Strings that are bare words. By default, you can get away
with writing $xxx = yyy; in Perl and the string yyy will get
placed into the variable $xxx.

• Symbolic references1

The strict pragma can be limited to apply only one or two of the
extra tests, for example:

use strict "vars"; use strict qw(subs refs);

Other useful pragmata:
constantdefine a constant (e.g. use constant VAT_RATE=> 17.5;)
diagnosticscontrol warning messages at compile and run

time
libset libraries for loading modules
overloadredefine operators in a package (e.g. make + do

something different!)
warningsfurther control over warning messages

Standard modules

Having spoken about the rather special type of module known
as a pragma, we'll go on to list some of the more normal standard
modules supplied with Perl.
BenchmarkTime testing of code
Carpdie and warn, but reporting on line in calling module
ConfigSystem information
CwdFind the current working directory
Data::DumperGet a printable string from Perl variables (see

also Storable and FreezeThaw on the
CPAN)

Englishprovide alternative English-like names for Perl special
variables

ExporterMake variables in a module available in the calling
code

File::Comparecompare two files
File::Copy copy and move files
File::Findrecursively find a file
Getopt::StdHandle - style options on the command line

(see also Getopt::Long for even more
features)

1 an advanced topic this one!

P219 Libraries and Resources

Learning to Program in Perl 235

IO::SocketClient programming; talk to a server (see also
Socket)

POSIXProvide POSIX standard identifiers
Sys::HostnameFind the name of the current host computer
Time::LocalConvert second, minute, hour, day, month, year

to seconds from 1.1.1970
Documentation is available from the standard sources on all

these modules; once you've started to use modules, you'll find it
easy. Here's a sample showing a few of them in use. Can you work
out which subroutine or variable is associated with which module?

#!/usr/bin/perl

use Sys::Hostname;

use Cwd;

use Getopt::Std;

use File::Find;

use File::Compare;

use English;

use Data::Dumper;

use Benchmark;

(getopts('vd:') and @ARGV == 1)

or die ("Usage $PROGRAM_NAME [-v] [-d directory] filename\n");

$dir = $opt_d || ".";

print ("Running on ",hostname()," from ",getcwd(),"\n") if ($opt_v) ;

timethese (1, {'perlcode' => sub {

find (sub {push @got,$File::Find::name if /$ARGV[0]/},$dir);

@got or push @got,"nothing!";

print Dumper(\@got) if ($opt_v);

print ("Looked for $ARGV[0] in $dir and found\n",join ("\n",@got),"\n");

$f = shift @got;

foreach $file(@got) {

compare($f,$file) and print "WARNING - $file differs from $f\n";

}

}});

Chapter 22 P219

236 Well House Consultants

And the result of running that is:

$./mod_demo -v -d /home/graham P219

Running on penguin from /home/graham/mar02

Benchmark: timing 1 iterations of perlcode...

$VAR1 = [

 '/home/graham/mar02/P219',

 '/home/graham/mar02/P219.txt',

 '/home/graham/mar02/.P219.txt.swp',

 '/home/graham/mar02/P219.bak',

 '/home/graham/manuals.bak/PERL/MODULES/P219',

 '/home/graham/couklogs/sitelist/subject.hold/topic/P219.html',

 '/home/graham/couklogs/sitelist/subject/topic/P219.html'

];

Looked for P219 in /home/graham and found

/home/graham/mar02/P219

/home/graham/mar02/P219.txt

/home/graham/mar02/.P219.txt.swp

/home/graham/mar02/P219.bak

/home/graham/manuals.bak/PERL/MODULES/P219

/home/graham/couklogs/sitelist/subject.hold/topic/P219.html

/home/graham/couklogs/sitelist/subject/topic/P219.html

WARNING - /home/graham/mar02/P219.txt differs from /home/graham/mar02/P219

WARNING - /home/graham/mar02/.P219.txt.swp differs from /home/graham/mar02/P219

WARNING - /home/graham/manuals.bak/PERL/MODULES/P219 differs from /home/graham/mar02/

P219

WARNING - /home/graham/couklogs/sitelist/subject.hold/topic/P219.html differs from /

home/graham/mar02/P219

WARNING - /home/graham/couklogs/sitelist/subject/topic/P219.html differs from /home/

graham/mar02/P219

 perlcode: 1 wallclock secs (0.52 usr + 0.10 sys = 0.62 CPU) @ 1.61/s (n=1)

 (warning: too few iterations for a reliable count)

$

22.2 The CPAN

Standard Perl stuff is built in to the language, and then things
which are wanted pretty often are supplied as standard modules.
Interesting items that are useful to some people, but outside the
needs of most people, are to be found in the CPAN – the Compre-
hensive Perl Archive Network.

The CPAN is a library of modules contributed by Perl program-
mers (you and I could contribute if we wanted!) and freely
available for download and use by anyone who wishes. Although
anyone can upload any module to the CPAN, indexing of the
modules is done by a couple of moderators who ensure that only
useful, tested material will be found by people searching for a
module to undertake a specific task.

Once you find a module that you want to use, you'll download it
and install it on your system:
cd (into its directory)
perl Makefile

P219 Libraries and Resources

Learning to Program in Perl 237

make

make test

make install

It might be that you need a C compiler such as gcc, or some
other modules, or some other library or piece of code, as there are
a lot of dependencies, but this will be explained in the "INSTALL"
file.

There are thousands of modules available on the CPAN.
Several years ago, O'Reilly published a "Perl Resource Kit" that
included a CD with the then-contents of the CPAN on it, and it was
hundreds of megabytes of source even in those days. No doubt
these days it would be a volume of CDs. Some CPAN modules
have so many capabilities that there are complete books on them,
such as:
CGIManage HTML forms, Cookies, etc. (this is also a standard

module in the latest release)
DBI and DBDInterfacing to SQL databases
TkThe Tk Graphics toolkit – a complete GUI

Other modules that we find of great interest to trainees include:
XML::ExpatXML Parser
libXML Another XML Parser
libXSLT XML Style Sheet
libNET FTP, Telnet and other protocol support
LWP Writing your own client

(useful to grab something from a web page in
your program)

Also available are a number of modules associated with
handling Windows operating systems structures and other Micro-
soft information, such as Win32::OLE and Win32::OLE::Enum,
which allow you extract text from (or modify and save away) a
Word document or Excel spread sheet.

22.3 Utility programs

Moving slightly away from the Perl language itself, there are a
number of useful utilities included with the distribution, such as
a2p convert awk to Perl
s2p convert sed to Perl
pod2htmlconvert in-line documentation in a Perl

program into HTML.
Also
podcheckerto check documentation
pod2latexto convert to latex
pod2manto convert to man pages
pod2textto convert to plain text
perlcc Perl to C convertor (experimental)
perldocPerl manual reader
perlbugScript to report Perl bugs
Outside the distribution, you'll find a whole raft of extra

programs available, ranging from text editors such as UltraEdit
and KWrite which are Perl-aware, through to ActiveState's devel-
opment environments.

Chapter 22 P219

238 Well House Consultants

22.4 Documentation

The Perl distribution comes with a complete electronic docu-
mentation set which can be installed as HTML pages or man
pages on your system. If you're online all the time, you can use a
central resource. Here are some examples:

The page on special variables, as seen on the Internet:

Valuably, the documentation also includes the Perl FAQ.

Figure 140

The main perl "man" page

Figure 141

Special variables

P219 Libraries and Resources

Learning to Program in Perl 239

Here's just a snippet from the contents list of the FAQ to show
you how wide-ranging it is!

• How can I remove duplicate elements from a list or array?

• How can I tell whether a list or array contains a certain element?

• How do I compute the difference of two arrays? How do I compute the intersection

of two arrays?

• How do I test whether two arrays or hashes are equal?

• How do I find the first array element for which a condition is true?

• How do I handle linked lists?

• How do I handle circular lists?

• How do I shuffle an array randomly?

• How do I process/modify each element of an array?

• How do I select a random element from an array?

• How do I permute N elements of a list?

• How do I sort an array by (anything)?

• How do I manipulate arrays of bits?

• Why does defined() return true on empty arrays and hashes?

• How do I process an entire hash?

22.5 Web resources

There are many web sites associated with Perl; we'll mention
just a few here:

http://www.perl.com Home of Perl - News, downloads, etc.
http://www.cpan.org Comprehensive Perl Archive Network

– modules library
http://www.perldoc.com Perl Documentation and FAQs
http://www.perl.org Perl Mongers – Perl Advocacy, user

groups, etc.
http://www.pm.org User groups – find nearby Perl users!

The following are commercial sites which, however, offer freeware
and shareware downloads:

http://www.activestate.comPerl for Microsoft Windows
http://www.indigostar.comPerl for Windows, integrated with

Apache
You'll find some resources on our web site too. For example, if

you want to download the source of one of the examples on this
course, go to http://www.wellho.net/resources/index.html and put in
the name of the program that you want. Please read the disclaimer
and limitation of use message that's on each example.

22.6 Newsgroups

UseNet News was one of the earliest internet services. It
provides you with the ability to post a message to a public notice
board, and to answer, or follow up on, messages that others have
posted, either by adding another message after the original (and
forming a "thread"), or by replying in email. There's a huge number

Chapter 22 P219

240 Well House Consultants

of posting made every day to UseNet News, so messages are split
into separate newsgroups by topic. It's up to you when you post or
read to select the most relevant group.

Groups are hierarchically named, so that all computer-related
topics should be in groups with names that start "comp.". Since
Perl is a programming language, follow next on to "lang.", etc.

Most major service providers have a news server that keeps a
copy of postings from the last week or two, and exchanges posts
with other news servers. Thus, you should have nearby access to
news no matter where you are. Traffic levels are so high, though,
that ISPs limit the groups they carry, and they also tend to run
filtering software; many postings don't make it all around the world.

Originally, messages were posted to a newsgroup via email,
and then read by anyone who wished, using a mail client. These
days, many users have moved on to accessing newsgroups via a
web portal.

Perl information in newsgroups

Chances are that the question you want answered has been
asked and answered already. But if this wasn't in the last week or
two, your ISP's news server may no longer has what you want.

A number of years back, a company called "DejaNews" started
to keep an archive of all postings to the majority of groups so that
you could search; DejaNews became Deja, and was then taken
over by Google, and this archive resource is now available via
http://groups.google.com.

Here are some of the active, relevant groups that Google holds:

URL direct to groupGroup name No. of threads1

http://groups.google.com/groups?hl=en&group=comp.lang.perl comp.lang.perl 44200
http://groups.google.com/groups?hl=en&group=comp.lang.perl.misc comp.lang.perl.misc 257000
http://groups.google.com/groups?hl=en&group=comp.lang.perl.moderated comp.lang.perl.moderated 9850
http://groups.google.com/groups?hl=en&group=comp.lang.perl.modules comp.lang.perl.modules 36300
http://groups.google.com/groups?hl=en&group=comp.lang.perl.tk comp.lang.perl.tk 21500
http://groups.google.com/groups?hl=en&group=comp.lang.perl.announce comp.lang.perl.announce 1840
http://groups.google.com/groups?hl=en&group=alt.perl alt.perl 22000

Google also holds a number of groups in languages other than English:
http://groups.google.com/groups?hl=en&group=de.comp.lang.perl.misc de.comp.lang.perl.misc 27500 German
http://groups.google.com/groups?hl=en&group=de.comp.lang.perl.cgi de.comp.lang.perl.cgi 30200 German
http://groups.google.com/groups?hl=en&group=fr.comp.lang.perl fr.comp.lang.perl 34200 French
http://groups.google.com/groups?hl=en&group=it.comp.lang.perl it.comp.lang.perl 17800 Italian
http://groups.google.com/groups?hl=en&group=fido7.ru.perl fido7.ru.perl 21800 Russian

Groups are also available in Finnish, Dutch, Norwegian, and no
doubt other languages, but these are typically not carried by the
Google service and you should look initially at the ISPs in the
countries where these languages are spoken.

If you follow the URL that we've given, you'll get the most recent
posts, but Google also provides an excellent search facility so that
you can comb through the data to find what you want. Although the
information is a little raw, it's often very good, and you're far more
likely to learn about down-to-earth matters with Perl through post-
ings than through web sites.

A note of caution

We strongly suggest that you read the newsgroups and look for
the information you want there and elsewhere before you even
consider actually posting your question. Remember that any

1 The number of threads column in the table indicates how
many Google held in the group as of 1st March 2002

P219 Libraries and Resources

Learning to Program in Perl 241

message you post may be read by hundreds or thousands of
people, and many of them won't hesitate to tell you that the ques-
tion was asked last week, or that it's on page 474 of "The Camel
Book".

You should also bear in mind that by posting to a newsgroup,
you're putting your email address in the public domain, and you'll
start getting a load of junk email as spammers have programs that
harvest email addresses from newsgroups. You might wish to use
a modified address and include instructions in the posting as to
how to get your real address, or perhaps use a separate email
address (e.g. Hotmail) for posting.

There's more to getting posts right ("netiquette") too.
Remember you're publishing information and you should bear in
mind taste, copyright, libel, etc. Read your ISP's acceptable user
policy (AUP).

Here's an example of what to expect if you post off-topic, or fail
to read the manual first.

> > > I am wondering if it is possible to disable mod_perl in a specific

> > > directory tree on a server that otherwise is running mod_perl?

> >

> > Yes simply switch to using the cgi-script handler rather than

> > perl-script handler. (This, of course, has nothing to do with Perl).

>

> PLEASE expand on this answer.... my host is an idiot, and I am

> ignorant in the ways of apache server configuration.

There is a manual you know. We are all ignorant until we make the effort

to learn. If you are ignorant of how to do things like this yourself it

does not make sense to buy hosting from someone who is also ignorant. You

either need to know how to run your website yourself or buy your hosting

from someone who does.

Please do not use Usenet groups as a "read the manual to me" service;

especially don't use Perl newgroups as a "read the Apache manual to me"

service.

22.7 Chat

Internet Relay Chat (IRC) provides chatrooms; users log on to
an IRC server (via an IRC client program), and then select the
chatroom that they wish to visit. IRC servers are linked together,
and you're onto a worldwide talking network.

The chat room associated with Perl is know as #perl, so:
(Start your IRC client) /join #perl
Anything that you type with a leading / is a command, and

anything else is text that gets displayed on the screen of whoever
else has joined #perl at the time.

IRC is an interactive way of getting specific help. Remember to
be polite to the experts who are often to be found in this chatroom.
This is a free service, and the least you can do is to be polite!

Other commands
/who *who is in this chat room?
/quitleave the IRC client

Chapter 22 P219

242 Well House Consultants

/helpgive a list of commands
/rulesread the IRC rules
/listlist channels

22.8 Books

Perl is well covered in books; we have about 60 in the library at
our training centre, and there's a list and a description of most
books at our web site: http://www.wellho.net/resources/library.html.

You won't find some of these Perl books in your local book-
store, but almost any of them still in print can be ordered online.
You'll find links on our website to take you to an appropriate store.

22.9 Meeting users, getting local support and training

User Groups

There are Perl user groups all over the world; once you start
looking, you'll be amazed at just how many. Near us, there are
groups in Bath and Bristol and Oxford and Southampton....

Start looking at http://www.pm.org and you'll find links. Some of
them are very active, others less so.

List Servers

Some of the local groups run list servers to keep you up-to-date
on their activities and other matters of interest. There are also
other specialist list servers if you're going to be involved in Perl
development or other topics beyond the scope of regular
newsgroups.

Well House Consultants

You'll be reading these notes because you are or have been on
one of our training courses (or a colleague has passed you our
training notes so that you can teach yourself).1

We offer a wide range of Perl and other Open Source courses
and we can probably help with your more advanced Perl training
requirements. For one or two trainees, it's most cost effective for
you to attend a public course at our training centre; for larger
groups we can run a private course at our place or yours.

After your course, other questions may crop up. Please look in
your notes, look in the books, do a quick search on Google as we
described above – you'll find that most of your questions are
answered. Do you have any colleagues who might know the
answer? If you're still left with a question, you're very welcome to
email me (graham@wellho.net), and I'll get back to you 24 to 48
hours later with at least a few pointers. Please bear in mind that
this is a free service that we offer to trainees, and don't overuse it!

1 We KNOW this happens ;-))

Learning to Program in Perl 243

23 Perl 6 Look Ahead

The rewrite of Perl 5 into the new Perl 6 language is under way.
Now that Perl is a teenager, it's showing signs of age that would
make it hard to develop it forward while maintaining compatibility
with code that was written in its early childhood. So the very brave
decision has been taken that this will be a new language. There
will be good tools to help you convert your source, automatically
in most cases. Perl 6 will have "Perl 5 modes" in one or two areas,
and the underlying philosophies of Perl remain. The P of Perl will
still stand for "practical". The language will still be eclectic, and will
still assume you know what you're doing as you code. If you don't
know what some structure does, it still probably does the sensible
thing. Indeed a term for this, DWIM ("Do what I mean"), has been
coined.

As I revise this module, early summer 2003, the first Perl 6 book
is about to hit the shelves but the language itself isn't yet released
even in a testing form. There has been a whole series of conver-
sations and discussions via the RFC ("Request for Comment")
mechanism, and the Perl community has made good input. Now,
Larry Wall and team are working on the minutiae, and the coding
of the language itself. In some areas (such as "Parrot"), there's
already been code around for quite a while.

This doesn't mean that you should wait for Perl 6 before you do
any more coding (you would have a long holiday!), nor that Perl 5
development has stopped. Currently, the 5.8 release is available
for production use, a 5.9 development thread is starting which will
include a few of the aspects also slated for Perl 6, and there's
every intention that there will be a 5.10 production release which
will be a final, stable Perl 5. Perl 5.10 will probably survive for
years, just like Perl 4.036 did (or should I say "does"?). Rather,
marvel at the sheer genius of what Larry's come up with, then go
forward with Perl, confident that it's not about to be usurped by
some language such as Java or C#.

23.1 Objects

In Perl 6, everything is an object, and has *PROPERTIES*.
That doesn't just mean that what you create is an object; it means
that the Perl built-in types are objects too, and you use methods to
set or discover things about them, or get them to do things. You
want to get the number of elements in a list?
@aaa.getprop(length)

should work for you, but then being Perl, that will be shortened
down to:
@aaa.length

if you like or even:
+@aaa

Chapter 23 P256

244 Well House Consultants

(OK - ask about that last one later.)
 There's a proper class keyword to define classes, you can still

define Perl 5 packages if you wish, and you still bless the main
structure using the bless function. You will be forced to use the
two-parameter form of bless, by the way. You can also define
extra properties that will be maintained for each object separate
from the blessed structure, using the attr (for attribute) keyword.

Inheritance will be defined using the is keyword on the class
declaration, rather than the kludged @ISA; thus:

class dog is animal
Since everything's an object, with attributes, you can read and

write some surprising settings on something as simple as a scalar.
Let's say that you want to set a variable to contain a numeric value,
and have that value be true.
$demo =16;

Yes, that's true in Perl 5 and also in Perl 6.
$demo = 0;

Oops, that has a value of zero, but if you test it in Perl 5 it will give
you a false value. That might not be what you want. You might
want it to be true even though it's zero. So in Perl 6:
$demo = 0 but true;

and the attribute is set. If you wonder about things like this, think
how useful it will be to return a value from a subroutine, and also
to return a flag to say "yes, this is a valid number" even if the
number is 0.

23.2 Operators

String handlers

$(....) will evaluate an expression in a scalar context, and
@(....) will evaluate an expression in a list context. So:
print ("Please enter number ",$n+1,": ");

becomes
print ("Please enter number $($n+1): ");

The old concatenation operator, ".", has been taken away to
become the method operator. Really the only sensible option as
it's become such a standard in most other languages. A new oper-
ator "_" replaces the "." for string concatenation. Since _ is valid
in a variable name, it'll have to be used with white space just as
has always been the case with operators such as "x".

Here documents always had to be coded up against the left
margin. This is no longer so, as you can inset the final delimiter by
a certain number of spaces, and then each line will be considered
inset that same amount. Other changes allow you to place the ;
on the terminator line, and force you to quote the initial terminator.
Thus:
while ($j = pop (@stuff)) {

print <<DONE

There is a record called $j

which is printed here

DONE

 ;

}

P256 Perl 6 Look Ahead

Learning to Program in Perl 245

print "And that's your lot\n";

becomes
while ($j = pop (@stuff)) {

print << "DONE"

There is a record called $j

which is printed here

DONE ;

}

print "And that's your lot\n";

Comparison operators

Ever wanted to write if (1 < $x < 10) ...?
Well, it will work in Perl 6. But what will it do? It will do what I

mean – DWIM. In this example, it'll check that the contents of $x
has a value (in a numeric context) that's between 1 and 10. You
could also write:
if ($a != $b != $c) ...

but you'll need to be careful, that will check that neither $a nor $c
is equal to $b - $a and $c could have the same value and the
whole expression will still be true. By the way, $a and $b are no
longer special variables.

Ever got yourself mixed up between == and eq? Ever found
yourself comparing numbers when you should be comparing
strings? Enter the smart match operator:
if ($a =~ 20) That's numeric
if ($a =~ "Twenty")That's an exact string match
if ($a =~ /dog/)That's "contains"
You might have been worried until you saw our third example.

The =~ operator has widened from pattern match; it still does
pattern matches, but it does 34 other things too, depending on
what it's asked to compare to what ...
if (@a =~ 29) Is there a value "29" in the list @a?
if (@a =~ @b) Are lists @a and @b identical?
if (%a =~ "dog") Is there an element keyed "dog" in

%a?
Perl 5's or operator (and the || operator too) work a treat for

giving answers "a" or "b" or "c" except when one of the input
values is false. You may well have written:
$abc ||= 16;

to set $abc to 16 if it didn't already have a value. You may well
have been caught by the trap that if $abc already existed. But with
a false value, that value would be overwritten with the number 16.
Enter the err or // operator1:

$abc //= 16;

to set $abc to 16 if it doesn't have a value yet.
err and =~ may look exotic, but we rather suspect that they'll

be the operators of choice in Perl 6 coding once it's established,
and operators such as ==, eq and or will gently fade into the
backwaters.

1 or with a slant to it

Chapter 23 P256

246 Well House Consultants

Vectorised operators

You want to add one to every element of a list? Write a loop?
Use the map function? Sure, you can do either, or you can use a
vectorised operator. If you add a ^ in front of an operator, it will
apply the operation to every element of the list, and if either of the
operands is shot of values, as it would be in the case of a scalar,
that operand is stretched.

Thus:
@result = @x ^- @y;

gives you a result list where every element of y is subtracted from
every element of x. and:
@result = (@x ^+ @y) ^/ 2;

computes a list of averages and:
@result ^+= 1;

adds one to each element of the result list.

23.3 Data Types

File handles aren't a special limited type of variable any more.
They're objects that can be held in scalars. You want to open a
file?
$fh = open("abc.txt");

Typeglobs are gone too, replaced by bindings (see 23.4
Bindings).

Internally, Perl 6 will still use long and double integers, but it will
no longer get into trouble when you burst the limits of these data
types. Internally, it will switch to using arbitrary precision and accu-
racy numbers of type BIGINT or BIGNUM. Significance for the
programmer? Usually none; the change is automatic and invisible.
For sure, code will slow down when big numbers come into play,
but at least you'll get the correct answers.

Hashes are implemented as tables of pairs. Don't worry too
much about that one at the moment, but note that you can write
@stuff = %hash.kv;

to get a list of key, value, key, value, where in the past you would
just have written
@stuff = %hash;

23.4 Bindings

The := operator allows you to bind an (extra) name to a
variable.

In any version of Perl, a variable is comprised of two parts – the
memory that's used to hold the value(s) associated with the vari-
able; and the name itself, held in a symbol table. The memory
management system keeps note of how many references there
are in the symbol table, directly or indirectly, to each variable's
data, so that memory can be "garbage collected" from time to time.

In addition to the $ and \ operators, which will still be avail-
able, Perl 6 introduces a new operator :=. It's known as the
binding operator, and it means "is also a name for...". Let's see an
example:
$x = 16;

$y := $x;

P256 Perl 6 Look Ahead

Learning to Program in Perl 247

$x++;

print $y;

will print out the value 17.
Great theory. Practical uses? Many, many, many! Try this for

starters:
(@a, @b) := (@b, @a);

Swap over the names of lists @a and @b. Very efficient, no need
to start copying great swathes of data around in memory.

Subroutine bindings

Yes, you can still use @_ if you want to write job protection code,
but it’s much better to use named parameters. Remember:

sub somename {

my ($first, $second) = @_;

$third = $first + $second;

etc.
Well, do you prefer this?

sub somename ($first, $second) {

$third = $first + $second;

etc.
Much better. But you can go further:

sub somename {

$third = $^first + $^second;

etc.
Perhaps we had best explain. If you start a variable name $^,

you're referring to a calling parameter for the block your in,1 and
Perl will Asciibetically sort all such variable names so that you
don't need to declare them at all. Perl will work out the order.

If you're porting your own sort subroutine from Perl 5, just
replace $a with $^a and $b with $^b. Perl 6 now uses parameters
to collect the two elements it's to compare, and no longer has that
wart of the special variables $a and $b. This also means that you
can run a sort which involves another sort internally; old global
conflicts are gone!

You can now call subroutines with multiple lists, such as:
myjob(@list1,@list2);

and they won't get slurped together into a single list in the subrou-
tine. If you do need to have a "slurpy list" type parameter, an extra
* preceding the variable name will give you that:
sub example ($one,$two,*@three) {

declares a subroutine with two scalar parameters, and then all the
rest of the parameters will get slurped into the @three list. By
contrast:
sub example ($one,$two,@three) {

declares a subroutine that takes three parameters; calling it with
more would be an error. Yes, this does open the way for Perl 6 to
define a number of subroutines all with the same name, and have
different ones called depending on the calling sequence. Notice a
similarity to Java's overloading? Syntax and rules for this capa-
bility are still being worked on.

1 all blocks are subroutines now

Chapter 23 P256

248 Well House Consultants

You may have come across examples of methods being called
in Perl 5 where a hash is passed in, the keys being used to instruct
which parameters are set. Perl 6 has a direct => operator that can
be used in the call to pass in a pair, which is a new data type. A
hash becomes a table of pairs.

"All blocks are subroutines" - remember? You can declare:
$var = { code}

and then
if ($j !~ 10) $var;

Finally, you can bind a subroutine with an assumption. Let's say
that you have a subroutine that returns one number divided by
another:
sub div {$^x / $^y}

and you want to define another subroutine that returns you a recip-
rocal, without the need to rewrite all the code.
$rec := &$div.prebind(x => 1);

or
$rec := &$div assuming x => 1;

23.5 Conditionals and loops

Topicalisation

"What?" you ask, with a shudder. OK, we're talking $_. You're
used to leaving out a variable name in Perl 5, and having it work
with the contents of $_. We make a bit of a game of this on our
beginner's courses for Perl. Like everything else in Perl 6, an
excellent concept has been breathtakingly extended.

Switch statements

No, you still don't have a Switch keyword in Perl 6. Rather, you
have a given. Let's try an example:
given $val {

when 17 { code to perform}

when 19 { code to perform}

when "n/a" { code to perform}

when m:i/end/ {code to perform}

default {code to perform}

}

The given statement topicalises $val,1 and then each when
statement does a smart match. If $val works out to the number
17, the first block is performed; if it works out to 19, then the
second block is selected instead. If it contains the text "n/a", then
the third block is performed, and if it matches the regular expres-
sion /end/, ignoring case, then the penultimate block is
performed. No match at all, and the final block after the world
"default" is performed.

You'll note that there's no need to bracket the condition after the
"when"; that's now a common feature of all conditional and loop
statements. For sure, you can write
when ($ab) {print "It matches \$ab\n";}

but you can also write:
when $ab {print "It matches \$ab\n";}

1 write $_ = $val if you like

P256 Perl 6 Look Ahead

Learning to Program in Perl 249

There does have to be a space before the { character; that's
how Perl 6 can tell a member of a hash apart from a code block.
Seems a small price to pay; after all, whoever wants to leave
spaces within variable names?

At the end of a successfully completed when block, Perl 6 will
jump out of the given construct. There’s no need to specify a
break,1 or a breaksw or anything like that. Larry Wall has
provided you with a continue statement that lets you continue on
to the next "when" if you really want to.

Have a look at this:
given $val {

when < 10 { print "Much "; continue}

when < 21 { print "Reduced Rate"}

$fullfare++;

when > 65 { print "Senior"}

print "Regular"

}

for and loop

Perl 6's loop command replaces the traditional for loop of
Perl 5, and C and many other languages. At its simplest:
$value = 1;

loop {

$value *= 2;

print "$value \n";

$count ++;

$count < 10 or break;

}

or a little for complex:
$value = 1;

loop ($count=0; $count<10; $count++) {

$value *= 2;

print "$value \n";

}

The for loop is now an iterator that lets you step through some-
thing (at its simplest, a list):
for @data { print }

topicalises each member of @data in turn, and passes each to the
subroutine that's declared as the thing to be performed. If you
don't say anything about the parameters to a subroutine, the first
parameter is taken to be $_, and print defaults to printing out $_
as it always has done!

If I want to name my variables in a for loop, I can do so:
for @data -> $scvar { print $scvar}

and:
for @data { print $^scvar}

will both work, and I can also write a more complex structure:
for @x,@y -> $m,$n {

print "$m $n\n"}

1 you can if you wish, though

Chapter 23 P256

250 Well House Consultants

to iterate through @x and @y at the same time. This latter example
will print out element 0 of both lists, then element 1 of both lists,
and so on. You want to see another?:
for @x;@y -> $r {

print "$r\n"}

will print out alternate elements of @x and @y. You may spot some
similarity to iterating through a list in Tcl if you're familiar with that
language.

Finally:
for %demohash { print .key}

will let you print out all the keys of a hash. If you're wondering, the
for statement topicalises each element of the hashtable in turn.
Then any method that isn't told what to run on (in this case the key
method, told to run, but not told what to run on), runs on the current
topic.

23.6 Exception handling

Perl 6 will return any errors as objects in $!. That's much
simpler than the use of $! $@ $^E and – oh I forget the other
ones – in Perl %). You can then run methods on the object to learn
more about the error. Some of these methods use the "." notation,
and others use a "Sigil" character in front of the variable to force a
context. Thus:
+$! $! as a number
_$! $! as a text string
^$! $! as a boolean

These notations are available elsewhere in Perl 6 too; the whole
language is much tidier with far fewer special cases.

Try blocks

When you run a piece of code, it may work or it may fail. If it
fails, you want to trap the failure. You can do this in Perl 6 using a
catch block.
@demo = (10,20,30,0,50);

try {

CATCH { print "Oops - division failure\n"}

for @demo {print 1/$^each}

}

The loop attempts to print the reciprocal of each of the
members of a list, but if it fails, the error is caught and an error
message is printed instead. If the whole try block runs success-
fully (if, say, our demo list didn't include a zero element), then the
catch block would never be run.

You'll notice that the catch block is inside the try block; using
that structure, the CATCH block has access to locally scoped vari-
ables within the try. This is a much better solution than you'll find
in Java, for example. The word "CATCH" is capitalised; by way of
explanation, any block that is capitalised is set aside for possible
later use – it's a trap, an error handler, an initiator or whatever. You
may have come across BEGIN, END and DESTROY in Perl 5; there
were also CHECK and INIT blocks. In Perl 6, not exclusively asso-
ciated with Try, you also have:

P256 Perl 6 Look Ahead

Learning to Program in Perl 251

PRE Condition that must be true on block entry
POST Condition that must be true on block exit

(These two are very useful during code development)
KEEP To be performed on block exit if it succeeded
UNDO To be performed on block exit if it fails
FIRST First time through a block only
LAST Last time through a block only
Blocks such as CATCH can take a condition, so that they'll only

catch certain things. You can supply multiple CATCH blocks within
a single try. Where you place the blocks within the try is up to
you.

23.7 Rules and grammar

If you're a newcomer to Perl, you'll find regular expressions
powerful but obtuse and hard to learn. If you're an old hand, you'll
swear by regular expressions but you'll want so much more.

Perl 6 doesn't describe things as "regular expressions"; they
are "rules". A series of rules can be combined to make up a
grammar. Perl 6 itself can be defined as a grammar, and you can
amend and alter that grammar if you want, thus changing Perl with
minimal coding. Don't try that yet.

In rules (previously known as regular expressions), some
things remain unchanged. Literal letters and digits still match
exactly, such as \ in front of a special character will cause that to
match exactly. You'll have grouping with (), alternation with |,
and counts such as * + and ? (greedy) and *? +? and ??
(sparse) just as you're familiar with.

Modifiers

Rule modifiers are now written at the beginning of the rule, and
not at the end. So that:
if ($x =~ /end/i) {....

becomes
if $x =~ m:i/end/ {....

The old /x modifier has gone1 and so have the /s and /m
modifiers; they should really have been defined within regular
expressions in the first place, and not as modifiers.

The /e for execute modifier on s has gone. Just look at this
elegant solution:
$j =~ s/(\w+)/ucfirst(\1)/eg;

becomes
$j =~ s:g/(\w+)/$(ucfirst($1))/;

using the new $(...) notation that we've already seen else-
where in Perl 6.

Other modifiers:
:c continue (carry on, rather like g in a scalar context)
:o once only
:w any white space in the expression is \s* or \s+, this

latter if the white space appears between two words
:p5 Please use Perl 5 Regular expressions!

1 by default, and white space in a regular expression is now a comment

Chapter 23 P256

252 Well House Consultants

On s, you might want to use:
:4x do 4 substitutes
:3rd substitute the third match
:e3rd substitute every third match

Elements with a rule

Assertations
^ and $ match the beginning and end of the string, just as they

always did unless you had used the /m modifier. You're also
provided with ^^ and $$ which will also match at the beginning
and end of embedded lines. \a \z and friends have gone.

Grouping
(...) is still a grouping. Did you like (?:) as "group

but don't capture" in the past? Thought you didn't! You can now
use [.....] for group but don't capture.

You can also use { } to embed some code within a
regular expression. Thus:
when /(\d+){$1 < 256 or fail}/

if you want to check for a numeric value, or series of digits, that
works out whether or not a number less than 256 is present.

Variables within rules
A scalar variable within a rule is matched literally, thus:
$var ="Hello?";

if (/$var/) {

will match $_ for the literal text H-e-l-l-o-? in Perl 6, whereas it
would have matched H-e-l-l followed by 0 or 1 letter o's in Perl 5.
If you include a list in a Perl 6 regular expression:
if (/@lis/) {

you'll look for a match to any member of the list.1 If you include a
hash, you'll check for the existence of an element with the given
key.

These extra facilities for variables will save you a lot of
\Q$var\E type stuff, but in any case the \E has gone in favour of
non-capture bracket groups:
\Q[Hello?]

for example.
Metasyntax
If you're wondering what has happened to the old character

groups that used square brackets, welcome Metasyntax, written
between < and > characters. Metasyntax includes a wide range
of possibilities, including
<sign> a sign character
<'literal'> a literal piece of text
<$var> interpolated variable (if you really want to!)
<ws> white space - just like \s+
<sp> a space character
<(....)> a code assertion

1 a very neat way of searching to see if something's present in a list

P256 Perl 6 Look Ahead

Learning to Program in Perl 253

Capturing

When you want to capture groups in a rule, you can do so using
syntax such as:
(\d+){let $num := $1}

which you can simplify down to
$num := (\d+)

Very neat – naming and capture all within the rule (no assign-
ment of a list necessary), and the ability to capture nested
brackets if you wish.

Concluding rules and grammar

There's so much that's new in Perl 6's rules and grammar, (we
haven't described <commit>, <null>, <prior>, <before
...>, :, ::, :::) that for most users the best advice is "it's good,
but wait until you have a rule engine in your hands to experiment
with before you try and learn the whole thing". Uniquely amongst
all the features that we've described in this document, the features
and changes are so far-reaching that it's probably best to learn
rules as a new topic rather than to try and convert your existing
regular expression knowledge.

23.8 Under the bonnet

With Perl 5, you wrote your source code into a file, and said "run
that file". You'll do the same thing with Perl 6.

Internally, Perl 5 converted your script into a series of opera-
tions and opcodes via a compiler, and it then used the resulting
Btree to run your program. Although it wasn't initially called a
"virtual machine", that's really what it was.

Perl 6 will use the new "Parrot" virtual machine, which is being
designed and written in parallel with the language specification
and development. There are already parrot assemblers and test
code available, that's been the case for quite a while now, and
Parrot will support other languages other than Perl.

As well as having a shiny new car in Perl 6, you'll have a fresh,
clean-burn engine that can run on other fuels too.

Chapter 23 P256

254 Well House Consultants

23.9 Conclusion

Perl 6 is an exciting rewrite of the Perl language, adding facili-
ties to take it forward for the next generation. It's well thought out,
clever, powerful and follows the philosophies of earlier Perls that
we've grown to know and love. It bravely adds facilities, and it
bravely breaks compatibility where that was seriously necessary
for the future.

Perl 6 is exceptionally feature-rich, and it's not going to be the
sort of language you can learn and become fluent in overnight. It's
going to take time to learn, and you're going to need to use it with
care. As Damian Conway, one of the key players in writing Perl 6
said at a recent lecture in London: "We're giving you all this power
in Perl, now go out there and use it carefully."

[Disclaimer. Although every attempt has been made to correctly
interpret the information that we have on hand on Perl 6, we
cannot take any liabilities for any errors or omissions. You should
also be aware that Perl 6 is currently under development, and
there is a chance that some elements described may change prior
to its production release.]

Learning to Program in Perl 255

24 A Quick Look Ahead

24.1 Fundamental and advanced topics

There are many aspects of Perl that every Perl programmer
needs to know about and understand to some extent. The funda-
mental elements of the language all mesh together to provide a
tool with a wide variety of uses. Among these fundamental
aspects, we list:

• scalar variables, calculations and assignments

• commenting your program

• string handling functions and operators

• conditional and loop statements and operators

• input and output functions and file handling

• collection variable types (lists and hashes) and associated
functions

• regular expressions and their use for matching and
extracting data

• subroutines for splitting code into manageable sections and
multiple files

• special variables and topicalisation

• documentation and CPAN sources, books and where to look
things up

Once you get beyond these fundamental aspects of Perl, you'll
learn that it can do much more too. However, the extras needed
by a programmer wishing to extract data from an XML data file will
differ greatly from the extra required by a programmer who's using
Perl as part of a really large project. And there will be a third set of
extra for the programmer who wants to provide a GUI (Graphic
User Interface) on a Perl application, and a fourth for the
programmer who wants to use Perl to present information in a
browser window.

The purpose of this module is to give you a roadmap ahead,
making you aware of some of the more advanced features of Perl
but not providing you with full training on them. To give you an idea
of the size of some of these extra facilities, there are complete
books on subjects such as Perl and XML, and Perl and the DBI1
just to quote two examples.

How do these further facilities talk to Perl?

Some of the additional facilities that we'll tell you about are built
in to the Perl language itself. Others are supplied as standard
modules or modules that you can download from the CPAN
(Comprehensive Perl Archive Network). Further programmer's
facilities are available from third parties, and you can build Perl

1 See Appendix: WHC Library for further details on Perl books

Chapter 24 P770

256 Well House Consultants

into your own C application, and your own C code into Perl.
Remember, there's always more than one way of doing it with
Perl.

24.2 Other facilities in the Perl language

File handling and system administration functions

Built into Perl, you'll find all the standard facilities of any
language that allow you to open, close read, write and append
files. You'll also find a whole series of operators relating to file
testing – operators like the -f operator to test if a string is the
name of a plain file.

Perl users want to be able to do more with files than just read
and write them; they want to be able to parse through all the files
in a directory, for example. There are standard facilities, for
example, opendir and readdir, to let you do this. Used in
careful combination with other file test operators, you can easily
roll your own program to pass recursively through a directory tree,
and the file module provides facilities like File::Find. It’s
shipped as standard with Perl these days.

There are functions in Perl to change file ownerships and
permissions, rename and delete files, and create and delete direc-
tories. Although these functions all look very linux-like, they do
work on other operating systems as the Perl Porters have carefully
implemented to perform the morally equivalent function on
Windows or MacOS that they perform on Unix and Linux. You are
strongly recommended to use these functions to perform your
systems admin tasks from within Perl, not only for code portability
but also for efficiency. It's much better than using a qx operator.

Object Orientation

As programs grow in size, they become harder to maintain. It
becomes natural for larger applications to split them down into a
series of parts, and have each part dealing with a certain aspect
of the application – a particular data type, or "class of object" as
you might call it. If all such objects are referenced only through a
set of subroutines or methods provided in a single place, then it
means that the main application programmer doesn't really need
to know about the internals at all, he simply calls a limited menu of
subroutines.

This approach to programming has been with us for a very long
time indeed. I was using it in the 1970s in a Fortran application,
and you'll already have used file handles in Perl that are really a
specialised sort of object. Think about it; you don't directly use the
contents of the file handle variable directly, but rather you use the
file handle as a parameter to one of a limited number of functions
and operators such as open and < > without knowing which
tracks, sectors or cylinders are being used on the disk. That extra
information is hidden (encapsulated) within the file handling class.

For the right application, object orientation is a great concept.
Languages like C++ and Java have special syntaxes that are
designed to enforce rules on you, preventing you from rolling up a
sleeve, reaching in and playing with internal values. Perl assumes

P770 A Quick Look Ahead

Learning to Program in Perl 257

you know what you're doing, but never the less, a special syntax
is provided that lets you write shorter, cleaner code to the Object
Oriented idiom if you wish, and at the same time it complicates the
syntax you need to use to reach those internal variables so that
you're hardly likely to do it by accident.

Because objects are such a handy way of wrapping up and
distributing code, you'll find many of the calls you want to make to
standard or CPAN modules use the idiom, and for this reason we
consider the writing of code that uses existing modules to be a Perl
fundamental. Providing your own types of object is definitely a
more advanced subject; it requires understanding of further tech-
nicalities of Perl, as well as considerable thought to the design
process. And not everyone needs to define their own objects.

Writing distributable modules

If you want to reuse code across a variety of applications, that's
great! An Object Oriented interface allows you to hide within
(oops, encapsulate within) all the complex code, and provide your
user with a simple, easy-to-use program interface. So far, so
good.

Your user will then need to keep your reusable code – your
module – in a directory that's apart from Perl itself and also apart
from his application code. He'll need scripts to install the module,
and I'm sure he'll want some documentation into how to use it. Of
course, user "A" wants his documentation in postscript, and user
"B" wants his documentation in HTML, so if you're not careful,
you'll end up spending more time wrapping, packaging and docu-
menting your module than you spent writing it in the first place.
There are two things you would know about to help you:

POD, or Plain Old Documentation, is a format in which docu-
mentation can be embedded within Perl source code. With the
standard Perl distribution, a number of utility programs are
provided with names like pod2text, pod2html, and pod2ps which let
your user generate the documentation he needs in the format he
wants.

The h2xs utility, also provided with the Perl distribution, gener-
ates a skeleton for new modules, including the actual module file,
complete with a few comments and POD headers to get you
started, a makefile that gives your users quick and easy ways of
installing the code, and the shell of a test program which you can
provide to your users to let them check that they've installed the
new module correctly.

More complex data structures

Lists and hashes are fundamental structures of Perl, but you
can go further. You can have lists of lists, hashes of hashes, or you
can design your own more complex structures. You do end up
writing some quite interesting-looking code, strings of $ @ and \
characters sometimes, with plenty of () [] and {} delimiters, but
the power is incredible. Some strong advice as you get into this:

• use a pencil and paper to draw a diagram of what you're

Chapter 24 P770

258 Well House Consultants

trying to do

• encapsulate your more complex structures into objects (that
way, the user calling them will be protected from the
complexity and is unlikely to damage the structure)

You are limited only by your own ingenuity. And remember the
saying "design matters".

Tieing

What happens to a scalar when you leave your program? "Its
contents are lost," you answer. That's the conventional logic, and,
yes, it does usually work that way. But you can change this.

With a scalar variable, deep in the bowels of Perl there are just
four functions – create, destroy, read and write. If you
choose to, you can provide your own subroutines to perform each
of these tasks for a specific variable, thus altering the behaviour of
a variable. This is known as "tieing". As an example of its use, you
could tie a scalar to the contents of a file so that every read or
write is a file read or write. Slow, but the variable would persist
from one running of your program to the next!

Tieing is also implemented for hashes (the most common use
of the facility) and also, in recent versions of Perl, for lists and even
for code.

Writing network clients and servers

Perl originated from a requirement of Larry Wall's to write a
utility that was network-aware, so its network programming capa-
bilities have always been very strong. Client programs can open
network connections almost as easily as they can open files. If you
know the protocols involved well enough, you can hold an auto-
mated conversation with a server on any port that you wish. For
those of you who don't know, and don't want to know, the bit and
byte-level stuff, a host of modules has been written and is avail-
able on the CPAN to let you write network clients using protocols
from HTTP to SMTP, and from FTP to SNMP.

Writing a server is a little different until a connection is estab-
lished. Under normal circumstances, you need to have a
background process (running as a daemon) waiting for a connec-
tion. You don't know where that connection will come from and,
when it does, you need to authorise it and usually spawn a child
process to handle the request so that your main process can
continue to monitor for new incoming requests.

Of course, Perl can do all of this for you.
Once the connection is established, Perl will talk to the client

just as described in the earlier paragraph. Once again, you'll find
a number of server protocol packages available on the CPAN if
you don't want to roll your own.

Binary Termio, and low-level file controls

The standard Perl language is rich in functions that provide all
sorts of binary and low-level controls if you need them. Functions
such as pack, unpack and read allow you to handle binary data

P770 A Quick Look Ahead

Learning to Program in Perl 259

with ease, and the standard strings can hold any bit combination
that you like. Operators such as & | and ̂ let you perform bitwise
operations.

Files can be opened and accessed at a low level using func-
tions like sysopen, and controlled via select, ftell and fseek
if you want to perform what used to be called "random access".
There is cooperative file locking support if you're likely to have
several users accessing the same file1 at the same time.

External signals can be trapped if you don't want a user's ^C to
kill your Perl program. There are some 30 different signals with all
sorts of other useful functions such as allowing processes to alert
each other in certain events. You can even set an alarm clock and
have your process alerted after a certain time.

For most applications, keyboard input consists of reading a
string of text up to a new line character and letting the operating
system take care of user's corrections via the backspace key, etc.
If you want to jump right in there, you can arrange to pick up inputs
character by character up to a different terminator, do your own
cooking of edit characters, and even look ahead to see if the user
has typed anything so that you don't need to stick on the keyboard
while your user types, but can carry on doing background
processing.

Before you start writing too much Perl that uses these facilities,
do think if there's something suitable on the CPAN for you and that
you're not reinventing the wheel!

Data Munging

So much of the power of Perl comes in its ability to manipulate
data. After all Perl is the 'Practical Extraction and Reporting
Language'. The term "data munging" has grown up to cover this
side of its capabilities.

Many data munging capabilities are listed in the Perl fundamen-
tals. Its string handling is second to none, its regular expressions
are incredibly powerful,2 and its collections data structures – lists
and hashes – can be handled as a whole through functions that
operate on every element, rather than you having to write longer
and slower code in the form of loops.

Beyond the fundamentals, functions such as map and vec are
worthy of note, and it's probably worth your time studying some of
the programming techniques that can be applied using them –
grep, and for and all the other functions you've learnt about – to
make for really effective data munging. Even if you're an experi-
enced programmer in another language, it's worth taking time to
study new tips and techniques that can make really effective use
of these functions in some amazing ways. See The Perl Cook-
book, Effective Perl Programming, Perl - the Programmer's
Companion, Data Munging with Perl and other books of that ilk.

1 some to write to it
2 but just wait till you see Perl 6!

Chapter 24 P770

260 Well House Consultants

Other built-ins

There are other built-ins that we haven't mentioned, things like
data formatting with the write function come to mind, but in the
fundamentals list at the top of this module, and the other introduc-
tions above, we've brought to your attention most of the
mainstream topics that are included in the base language.

24.3 Other facilities in Perl – further modules

So you want to read a database? You want to handle XML?
You want to write a graphic user interface (a GUI)? Surely this can
be done in Perl. After all, the philosophy of Perl is that it embraces
technology.

The answer is "yes, you can", "yes, you can" and "yes, you
can". BUT ...

Only a proportion of Perl users want to, for example, read a
database. Further, the main authors and maintainers of Perl, bril-
liant though they are, are not experts at every database package
and the detail of how it works. So the facilities to handle databases
are not built into the core of Perl, where they would clog up the
language for non-users, and where they would have to be main-
tained by a team with other interest and skills. Instead, they're
provided in the form of modules, either distributed with the main
Perl distribution if they're very stable and unlikely to change, or on
the CPAN if they're of more specialist interest, or support a fast-
evolving technology. By keeping such modules on the CPAN, it
means that new versions don't have to wait for the next Perl
release to get out there.

There are thousands of modules on the CPAN, of all different
shapes and sizes. Before a module is indexed, it's reviewed by a
team of moderators, so if you find something in the searches, it's
usually pretty good. It will include documentation and source so
you can see what it does, and even amend your copy, making
suggestions back to the author. In this section, we'll introduce
some of the most significant modules.

Note that almost all the modules we're going on to talk about
are called through Object Oriented interfaces. This is not some
fad, it's practical. The OO interface allows the definition of a
specific series of method calls which allows the module author to
provide a series of carefully crafted ways in – doors – to his code,
while also allowing him to hide the internals from unintentional or
accidental access. The OO interface also provides the mechanism
to handle several instances at the same time. In other words, a
database application using an OO-based module can talk to two
or more databases at the same time if that's a requirement.

Interfacing to databases

In pure computing terms, a database is any structure that holds
data, so even a plain text file counts. But that's not what we're
talking about. Here, we're talking about data that is arranged into
tables, each of those tables having rows and columns, and the
table typically held in some internal format which makes it access
and update much more efficiently than handling a plain text file.

P770 A Quick Look Ahead

Learning to Program in Perl 261

There are a number of database formats supported by Perl
modules, with names like "GdbM" and "NDBM". Some of these
formats are core to operating systems such as Linux and Unix.
NDBM files, for example, are used in mail aliases, NIS tables, and
X Windows colour tables. With Perl, you can access these tables
directly and, if you have appropriate permissions, actually update
the live information.

Relational databases, such as Oracle, MySQL, SQL Server,
and Sybase, comprise a number of tables where an entry in one
table can be used as a key to another table to avoid the duplication
of data entry. Such databases are usually controlled by a single
daemon running as a server, thus allowing synchronised access
by several users at the same time, a Structured Query Language
or SQL. Alas, SQL and interfacing to database daemons is not as
standard as we would like, but support is there in Perl via the DBI.

The Perl DBI modules provide a standard wrapper that lets you
talk to any supported relational database via a Data Base
Dependant (DBD) module. These sub-modules are available for a
very large range of database engines, and there's even one you
can use to treat a command-separated file as a database table.

XML and XSLT

For data that doesn't naturally fall into relational database
tables, a good alternative may be to use XML (eXtended Markup
Language). XML is a metalanguage in which the user defines his
own data hierarchy, and then tags the data to say what type of
information he's providing where in the data stream, all done
within plain text files that can be edited with any appropriate editor.

When a program analyses XML, it uses a piece of code known
as a "parser" and there are several good ones written in C. Rather
than reinvent the wheel, Perl modules on the CPAN provide
support for XML via the Expat and Gnome1 C language libraries,
thus making XML parsing fast, and easily update-able as the base
libraries change.

In order to transform XML data (where the data is tagged or
labelled by its function) into a presentation format such HTML, you
can use the definition language XSLT (eXtended Stylesheet
Language Transforms). Once again, there are Perl modules on
the CPAN to support this.

Graphics and Perl

The Tk module, based on the "Tk" part of Tcl/Tk, allows Perl
programmers to write a graphic user interface so that application
users aren't limited to a command line- or script-based Perl
program. Using the Tk module, you define components
("widgets") which are laid out in a window by a layout manager,
and then you write subroutines to define what's to be done when
certain events happen (such as "the xxx button has been
pressed"). Tk is extremely powerful in the appropriate environ-

1 you have a choice as to which one to use

Chapter 24 P770

262 Well House Consultants

ment, but its results can't be presented in a browser window. This
makes it powerful on intranet or local applications, but less so on
Web applications.

For Web-based requirements, Perl can support libraries, such
as GD, and for image manipulation modules, such as
Image::Magick which can be used to read and write image
objects in a wide variety of formats. Do be aware that this is all
server side graphics, and you may have a job persuading an ISP
to install GD for you onto his server as the processor implications
could be significant. There is no commonly used plugin that lets
you use Perl to generate graphics client side; that's probably a
Flash or Java application.

Writing Web clients

A browser is a Web client, and you may ask "why would I want
to write my own browser?". Chances are that you wouldn't want to
as such, but there are times that you'll want to read information
from a Web page (on a remote Web site) within your Perl.

Let's see an example.
I'm writing a program to convert an amount of money in US

Dollars into Australian Dollars, and I want it to use the current
exchange rate. That will work fine today, but tomorrow the
exchange rate will be different and I'll have a maintenance night-
mare. Much better to visit a central resource Web site1 within your
program, and update the rate automatically.

The LWP module of Perl provides all sorts of write-your-own-
client capabilities. It allows you to do all sorts of clever things,
many of which work technically very well but, we must warn you,
can upset Web site owners as your robot's traffic volumes cost
them money and ties up their Internet connections.

Talking to Microsoft applications

Although Perl originated from a Unix background, it's very well
supported on Microsoft platforms, to the extent that Microsoft
actively sponsor the ports and maintenance. You might wonder
why. It's in their commercial interest for Perl code to run well on a
*nix operating system and port to a Windows system. That way,
it's one less reason for people not to move to Windows!

Once you're running Perl on Windows, you’ll discover a number
of other things that you want to do, such as automatically update
an Excel spreadsheet, and indeed there are a number of modules
provided, standard in the ActiveState port, that will let you access
Word, Excel and other data formats. It's interesting to note that
Perl actually calls up Microsoft's .dlls internally within these
modules, so that the Perl programs that work on the Microsoft
format data have to be run on systems which have licenses for the
appropriate Microsoft packages.

1 in this case, the European Central Bank helpfully provides all the rates

P770 A Quick Look Ahead

Learning to Program in Perl 263

24.4 Perl in other guises

The use of Perl as a stand-alone program is fundamental, but it
does have other uses too, such as within scripts, for example, or
as service-providing daemons which we've already talked about
earlier in this module. Here are a few others:

Interfacing to the Web via cgi

Web servers such as Apache and Microsoft's IIS provide cgi -
the "Common Gateway Interface" to allow the Web to be used as
a front end to application code. The majority of such code has
historically been written in Perl.

Using form information read from the environment (via %ENV),
STDIN, and very occasionally from the command line @ARGV, cgi
allows any language, and not just Perl, to collect user requests.
Output to STDOUT gets sent through the Web server back to the
browser, thus completing the webification of Perl.

Data on both input and output conforms to certain formatting
standards, and Perl is an excellent language through which to
interpret or generate these formats. That, and Perl's ability to
process the underlying data strings, is why Perl has traditionally
been the language of choice of cgi applications.

Instead of writing your own CGI handlers, the CGI.pm module
can be used to add common gateway and HTML support to your
Perl. It's a huge module, and some users elect to use only parts of
it. For example, it has excellent cookie handling.

Interfacing to the Web via mod-perl

Mod-perl is the Perl language built into a Web server such as
Apache. By being more integrated with the Web server than is the
case with cgi, the need for the server to recompile the Perl every
time it is run is eliminated, leading to an increase in efficiency. The
closer integration also allows a range of extra facilities and
connections to be made within the Perl.

Other Web interfaces

Rather than write a program that generates HTML,1 there are
times that you'll want to write a Web page that includes some
programatic elements. Embed Perl, which works within mod-
perl, is one way that this facility can be provided. In the case of
Embed Perl, you write ordinary HTML but embed your Perl code
within it in special tags. The Web server then runs the Perl code in
these special tags, and the result that's returned by this code is
substituted into the HTML before it's sent on to the client. If you've
come across PHP, this will sound very familiar; the concept is the
same, although the tags used, and the underlying language, are
different.

Modules such as HTML::Mason provide templating systems in
Perl, and there's a wide range of modules to help with content
management, etc. Indeed there are also complete commercial
solutions such as Mediasurface, which are Perl-based and
tailored.

1 that's the way that cgi and mod-perl both work

Chapter 24 P770

264 Well House Consultants

Perl embedded within third-party applications

You'll sometimes find Perl embedded within other software.
Even commercial software such as Tivoli's management software
has it. In such cases, Perl juts out rather like a rock from the sea
– a spike onto which user code can be hung to tailor the underlying
product to meet the individual client's requirements.

You can, if you wish, also embed Perl into your own applica-
tions in another language such as C, or embed your C code into
Perl. Tools such as Xs and Swig are provided by the Perl folks to
help you with this, but do be aware that you're moving into a very
specialist field, and that you must consider compatibility issues as
Perl moves forward between releases. Some of the Perl structures
used by these interfaces change in the move from Perl 5.6 to Perl
5.8 and a recompile will be necessary. Even more, the changes
will be major if and when you move to Perl 6.

24.5 And also

Huge Data

Using just the fundamentals of Perl, and extra facilities
described earlier in this module, Perl can handle a huge number
of different tasks.

"Perl makes the difficult easy, and the impossible possible".
If you have a huge data file (and we've chosen to define huge

as meaning "so big it won't fit in memory") then, yes, Perl can
cope. This is a subject for further study once you're familiar with
the fundamentals of the language. We can usefully spend half a
day and more on training you on this topic if it's going to be rele-
vant to you.

Maintainable code

A final plea – PLEASE at all times consider the poor sucker who
has to maintain the code that you write. Write to a standard, docu-
ment well, split code into subroutines or modules as appropriate,
etc., etc.

Perl is like an artist's palette. Now that you've got some knowl-
edge of how to paint, please use it to produce code of quality, and
not something that looks like it's been dragged in by the cat!

Learning to Program in Perl 265

Appendix

I. Exercise sample answers

Our Perl program for exercise sample titled "pfb" from page 12
#!/usr/local/bin/perl

pfb - plain file backup

($#ARGV>0) && die "Usage: $0 [dirname]\n";

unless ($bd = $ARGV[0]) {

print "Backup directory name: " if (-t STDIN);

chop ($bd=<STDIN>);

}

-e $bd && die "Can't overwrite existing object\n";

mkdir $bd,0755 || die "Can't create directory\n";

while (<*>) {

unless (open(IN,$_)) {

print "Can't read $_. No copy.\n";

next;

}

unless (open (OUT,">$bd/$_")){

print "Can't write $bd/$_. No copy.\n";

next;

}

print OUT $section while (read(IN,$section,65536));

}

Our Perl program for exercise sample titled "rgb" from page 212
#!/usr/local/bin/perl

rgb - red, green, blue 2D array

open (IN,"rgb.txt") || die "not colourful\n";

while (<IN>) {

chop;

my @line = split(/\s+/,$_,4);

push @carr,\@line;

}

$,=" ";

for ($k=0;$k<=$#carr;$k++) {

next unless ($carr[$k][2] > 239);

print @{$carr[$k]}[0..3],"\n";

}

Appendix

266 Well House Consultants

Our Perl program for exercise sample titled "wstruct" from page 212
#!/usr/local/bin/perl

wstruct - structure of web accesses

open (WEB,"access_log") || die "no log file\n";

<WEB>;

while (<WEB>) {

s/^(\w+)\s+//;

push @{$htab{$1}},$_;

}

print "first and last accesses ...\n";

foreach $host(sort keys %htab) {

print "$host\n";

print $htab{$host}[0];

print $htab{$host}[$#{$htab{$host}}];

}

Our Perl program for exercise sample titled "tptest" from page 34
#!/usr/local/bin/perl

tptest - test "trainingprogram.pm"

use trainingprogram;

$demo = new trainingprogram qw(version 1.0 author Lisa);

$demo->setcourse("Perl Programming");

print $demo->getauthor,"\n";

print $demo->getpurpose,"\n";

print $demo->getversion,"\n";

print $demo->getlanguage,"\n";

print $demo->getcourse,"\n";

print "\nTraining program count: $ptc\n";

db_serverd

#!/usr/local/bin/perl

Database Server Daemon

use Socket;

use NDBM_File;

use Fcntl;

$dbfilename = $ARGV[0] || "tubes";

$on_port = $ARGV[1] || 4444;

if (-e "$dbfilename.pid") {

die "pid file exists. Daemon running already?\n";

}

Appendix

Learning to Program in Perl 267

open (PID,">$dbfilename.pid");

print PID "$$\n";

close PID;

tie %dbfile,"NDBM_File",$dbfilename,O_RDWR|O_CREAT,0600;

Set up listener

$proto = getprotobyname("tcp");

socket (Server, PF_INET, SOCK_STREAM, $proto) ;

setsockopt(Server, SOL_SOCKET,SO_REUSEADDR,1);

$pbind = sockaddr_in($on_port,INADDR_ANY) ;

bind(Server,$pbind) ;

listen(Server,SOMAXCONN);

await a contact. Do NOT multi thread in this simple example.

Requests are single-line.

while ($paddr = accept(Client, Server)) {

$request = <Client>;

$request =~ s/\s+$//;

($action,$key,$value)=split(/\s+/,$request,3);

$#response = -1;

$status = 900;

$key = lc($key);

($action =~ /^edit$/i) && ed();

($action =~ /^get/i) && get();

($action =~ /^grep/i) && dbgrep();

($action =~ /^new$/i) && new();

($action =~ /^replace$/i) && replace();

($action =~ /^delete$/i) && del();

($action =~ /^exit$/i) && killserver();

$retlocks = ($action =~ /lock$/i or $action =~ /^edit$/i);

print Client "ST: $status\n";

foreach (@response) {

s/*\d+,\d+*$// unless ($retlocks);

print Client "$_\n";

}

last unless ($status);

}

untie %dbfile;

unlink "$dbfilename.pid";

###

sub get {

Appendix

268 Well House Consultants

if ($key) {

if ($dbfile{$key}) {

push @response,"$key $dbfile{$key}";

$status = 1;

} else {

$status = 100;

}

} else {

foreach (sort keys %dbfile) {

push @response,"$_ $dbfile{$_}";

$status = 1;

}

}

}

###

sub dbgrep {

foreach (sort keys %dbfile) {

/$key/ && push @response,"$_ $dbfile{$_}";

$status = 1;

}

}

##

sub new {

if ($dbfile{$key}) {

$status = 201;

} else {

if ($value) {

$dbfile{$key} = $value;

$status = 1;

} else {

$status = 200;

}

}

}

##

sub replace {

unless ($dbfile{$key}) {

$status = 501;

} else {

($lock,$value) = split(/\s+/,$value);

if ($dbfile{$key} !~ / *$lock*$/) {

$status = 502;

} else {

if ($value) {

Appendix

Learning to Program in Perl 269

$dbfile{$key} = $value;

$status = 1;

} else {

$status = 500;

}

}

}

}

##

sub ed {

if ($dbfile{$key}) {

if ($dbfile{$key} =~ / *\d+,\d+*$/) {

$status = 300;

} else {

$lock = ($count%=1000)++.",".time();

$dbfile{$key} .= " *$lock*";

 push @response,"$key $dbfile{$key}";

 $status = 1;

}

} else {

 $status = 301;

 }

}

##

sub del {

if ($dbfile{$key} =~ / *\d+,\d+*$/) {

$status = 400;

} else {

delete $dbfile{$key};

$status = 1;

}

}

##

sub killserver {

$status = 0;

}

Appendix

270 Well House Consultants

Appendix

Learning to Program in Perl 271

II. CPAN sites

United Kingdom ftp.demon.co.uk
 ftp.flirble.org
 ftp.plig.org
 sunsite.doc.ic.ac.uk
 unix.hensa.ac.uk

Europe
 Austria ftp.tuwien.ac.at
 Belgium ftp.kulnet.kuleuven.ac.be
 Bulgaria ftp.ntrl.net
 Croatia ftp.linux.hr
 Czech Republic ftp.fi.muni.cz
 sunsite.mff.cuni.cz
 Denmark sunsite.auc.dk
 Estonia ftp.ut.ee
 Finland ftp.funet.fi
 France ftp.lip6.fr
 ftp.oleane.net
 ftp.pasteur.fr
 ftp.uvsq.fr
 Germany ftp.archive.de.uu.net
 ftp.gmd.de
 ftp.gwdg.de
 ftp.uni-erlangen.de
 ftp.uni-hamburg.de
 Greece ftp.ntua.gr
 Hungary ftp.kfki.hu
 Ireland sunsite.compapp.dcu.ie
 Italy cis.uniRoma2.it
 ftp.flashnet.it
 ftp.unipi.it
 Netherlands ftp.cs.uu.nl
 ftp.EU.net
 Norway ftp.uit.no
 sunsite.uio.no
 Poland ftp.man.szczecin.pl
 sunsite.icm.edu.pl
 Portugal ftp.ci.uminho.pt
 ftp.ua.pt
 Romania ftp.dntis.ro
 ftp.dnttm.ro
 Russia cpan.npi.msu.su
 ftp.sai.msu.su
 Slovakia ftp.entry.sk
 Slovenia ftp.arnes.si
 Spain ftp.etse.urv.es
 ftp.rediris.es
 Sweden ftp.sunet.se
 Switzerland sunsite.cnlab-switch.ch
 Turkey sunsite.bilkent.edu.tr

Appendix

272 Well House Consultants

North America
 Alberta sunsite.ualberta.ca
 California cpan.nas.nasa.gov
 ftp.digital.com
 Colorado ftp.cs.colorado.edu
 Florida ftp.cise.ufl.edu
 Illinois uiarchive.uiuc.edu
 Indiana ftp.uwsg.indiana.edu
 Manitoba theory.uwinnipeg.ca
 Massachusetts ftp.ccs.neu.edu
 ftp.iguide.com
 Mexico ftp.msg.com.mx
 New York ftp.rge.com
 North Carolina ftp.duke.edu
 Oklahoma ftp.ou.edu
 Ontario ftp.crc.ca
 Oregon ftp.orst.edu
 Utah mirror.xmission.com
 Virginia ftp.perl.org
 Washington ftp.spu.edu

South America
 Brazil cpan.if.usp.br
 Chile ftp.ing.puc.cl
 sunsite.dcc.uchile.cl

Australasia
 Australia cpan.topend.com.au
 ftp.labyrinth.net.au
 ftp.sage-au.org.au
 mirror.aarnet.edu.au
 New Zealand ftp.auckland.ac.nz
 sunsite.net.nz
Africa
 South Africa ftp.is.co.za
 ftpza.co.za

Asia
 China freesoft.cei.gov.cn
 Hong Kong ftp.hkstar.com
 Israel bioinfo.weizmann.ac.il
 Japan ftp.dti.ad.jp
 ftp.jaist.ac.jp
 Singapore ftp.nus.edu.sg
 South Korea ftp.bora.net
 Taiwan ftp.wownet.net
 ftp1.sinica.edu.tw
 Thailand ftp.cs.riubon.ac.th
 ftp.nectec.or.th

Appendix

Learning to Program in Perl 273

III. Common Errors in Perl

You'll notice that in some cases, the same error may be revealed at compile or run time. This happens because an
error can sometimes result in a change of meaning and, at other times, lead to a syntax error.

At COMPILE time (i.e. Syntax errors – things that aren't valid Perl)

Symptom:"Permission Denied" message
Error:Your program is not marked as executable (Unix, Linux)

Symptom:"Command not found" message
Error:You have given the wrong name for your program, or it isn't included in the path that the system looks at.

Note: this error can also occur if you have an error in the first (#!) line of your program, for
example, if you misspell perl as pearl

Symptom:Very strange error messages if you run the program by typing its name at the command line, but the
program functions if you type perl followed by its name.

Error:No #! line or #! line is wrong or #! line is not first in the file

Symptom: Various Perl compile time error messages
Common errors:1.Missing ; at the end of a statement

2.Missing , in a list
3.Missing $ in front of a variable name
4.Keyword such as while or print starts with a capital letter
5.Quotes not matching
6./s not matching in a regular expression; remember that you need three not two /s if you're

using the "s" operator
7.Brackets or braces not matched
8.A ; placed after an if or while or similar condition but before the block that is to form the

conditional or loop
9.No block after an if or while or similar condition

10.Round brackets left out where they're needed; often a problem if you're using operators such as
+= and &&

Note that Perl will often report the line number as two or three greater than the actual line on which the error
occurred, and the error might not be obvious from the message given.

At BEGIN time (i.e. Programs that compile correctly, but there are bits missing)

Symptom:"Can't locate xxxx in @INC"

Error:The Perl module you have called for in a use or require statement can't be found

Symptom:"xxxx did not return a true value ..."

Error:No 1; at the end of a module that's used or required

Symptom:"Can't find import in empty package ..."

Error:You've forgotten to put a package statement in your module.

At RUN time (i.e. Programs that malfunction)

Symptom:"Undefined subroutine called" or similar message
Error:Subroutine in wrong package, or subroutine name misspelt

 Symptom:Program runs too fast and produces no results
Common errors:1.The input file you gave doesn't exist or failed to open an output file correctly

2.You have the logic of a loop the wrong way round, so it skipped
3.You've misspelt a variable or list name that controls a loop
4. You've left the first comma out of the print list to STDOUT

Symptom:Instead of a lot of output, you get either a single number or a whole lot of 1s or 0s
Common Errors:1.You've used a list in scalar context

2.Use of @ where you meant $ to access individual list element

Appendix

274 Well House Consultants

Symptom:Output isn't spaced out nicely or looks odd
Common errors:1.You forgot to add new line characters onto your prints

2.You forgot to print out spaces between printed elements
3.You've confused print with printf
4. You've put or not put "" characters around a list to print

 Symptom:Program appears to do something completely different to what you wrote
Error:You've given your program the same name as something else on your system that has priority

Symptom:Program doesn't function as you expect
Common Errors: 1.There's an error in your logic

2.Missing $ in front of a variable name

Symptom:A for loop always executes exactly three times
Error:You've used , rather than ; in the loop "condition"

Symptom:A subroutine doesn't seem to have been run
Error:No brackets after a subroutine call

Symptom:Conditional blocks or logic returning odd results
Common Errors:1.Use of = where you meant == (overwrites variable named on left)

2.Use of eq where you meant == (String not numeric comparison)
3.Use of eq where you meant =~ (exact comparison not match)
4.Use of /xxx/ after eq (you've compared $_ to the expression)
5.Use of "xxx" after =~ (you should have used /xxx/)

Symptom:A variable appears to be empty, yet you're sure that it's been initialised
Common errors:1.Use of [..] to refer to a hash element (you've created a list as well)

2.Use of {..} to reference a list element (you've created a hash as well)
3.Variable name misspelt or wrong variable name used
4.$ missing off variable name

At RUN time on a web site

Symptom:"Not Found (Error code 404)"

Error:The URL that you've entered into the location bar (or that you've selected via a link) doesn't find anything;
check that your CGI program is correctly named and in the correct directory

Symptom:"Forbidden (Error code 403)"

Error:The URL you've entered points to the executable (cgi-bin) directory, but the actual file cannot be executed by
the web server; correct this using chmod

Symptom:"Server Error (Error code 500)"

This is a general error code that is presented for any error that occurs in running your CGI script; if you have access
to the log files on the server, they should help you

Common errors:1.Syntax errors, as listed earlier (run your script with perl -c!)
2.Incorrect header generated by script
3.Script does not generate blank line between header and body
4.Something is printed before the header line, often a "tracing" print statement gets left in

Symptom:Program works in testing, but not when uploaded
Common errors:1.Permissions are only set on the program for owner, not group

2.Data files are not available in the correct locations
3.Environment variables differ

Remember command line options
-c compile only
-w give warning messages
-d run Perl in debug mode

If you can't spot a problem, these options may give you extra clues

Learning to Program in Perl 275

During the course, you are welcome to browse through our book
library. If you are looking for a particular book but cannot find it, or would
like to borrow a book overnight, please ask the tutor.

Perl
title edition author(s) ISBN

ActivePerl™ with ASP and ADO 1st Tobias Martinsson 0-471-38314-7

Advanced Perl Programming 1st Sriram Srinivasan 1-56592-220-4

Beginning Perl 1st Simon Cozens, Peter Wainwright 1-861003-14-5

Beginning Perl for Bioinformatics 1st James Tisdall 0-596-00080-4

CGI Programming on the World Wide Web 1st Shishir Gundavaram 1-56592-168-2

CGI Programming with Perl 2nd Scott Guelich, Shishir Gundavaram, Gunther Birznieks 1-56592-419-3

Computer Science & Perl Programming 1st Jon Orwant 0-596-00310-2

Cross-Platform Perl 2nd Eric Foster-Johnson 0-7645-4729-1

Data Munging with Perl 1st David Cross 1-930110-00-6

DeBugging Perl 1st Martin C. Brown 0-07-212676-0

Effective Perl Programming 1st Joseph N. Hall, Randal L. Schwartz 0-201-41975-0

Elements of Programming with Perl 1st Andrew L. Johnson 1-884777-80-5

Embedding Perl in HTML with Mason 1st Dave Rolsky, Ken Williams 0-596-00225-4

Extending and Embedding Perl 1st Tim Jenness, Simon Cozens 1-930110-82-0

Graphics Programming with Perl 1st Martien Verbruggen 1-930110-02-2

How to Program CGI with Perl 5.0 1st Stephen Lines 1-56276-460-8

Learning Perl 1st Randal Schwartz 1-56592-042-2

Learning Perl 2nd Randal Schwartz, Tom Christiansen 1-56592-284-0

Learning Perl 3rd Tom Phoenix, Randal L. Schwartz 0-596-00132-0

Learning Perl on Win32 Systems 1st Randal L. Schwartz, Erik Olson, Tom Christiansen 1-56592-324-3

Learning Perl/Tk 1st Nancy Walsh 1-56592-314-6

Mastering Algorithms with Perl 1st Jon Orwant, Jarkko Hietaniemi, John Macdonald 1-56592-398-7

Mastering Perl/Tk 1st Stephen Lidie, Nancy Walsh 1-56592-716-8

Mastering Regular Expressions 1st Jeffrey Friedl 1-56592-257-3

Mastering Regular Expressions 2nd Jeffrey Friedl 0-596-00289-0

mod_perl Developer’s Cookbook 1st Geoffrey Young, Paul Lindner, Randy Kobes 0-672-32240-4

mod_perl Pocket Reference 1st Andrew Ford 0-596-00047-2

Network Programming with Perl 1st Lincoln D. Stein 0-201-61571-1

Object Oriented Perl 1st Damian Conway 1-884777-79-1

Official Guide to Programming with CGI.pm 1st Lincoln Stein 0-471-24744-8

Perl 5 Desktop Reference 1st Johan Vromans 1-56592-187-9

Perl 5 for Dummies 1st Paul Hoffman 0-7645-0044-9

Perl 5 Pocket Reference 3rd Johan Vromans 0-596-00032-4

Perl 5 Quick Reference 1st Michael Foghlu 0-7897-0888-4

Perl and CGI for the World Wide Web - Visual Quickstart 1st Elizabeth Castro 0-201-35358-X

Perl Cookbook 1st Tom Christiansen, Nathan Torkington 1-56592-243-3

Perl Database Programming 1st Brent Michalski 0-7645-4956-1

Perl Developer’s Dictionary 1st Clinton Pierce 0-672-32067-3

Perl for C Programmers 1st Steve Oualline 0-7357-1228-X

Perl for Dummies 3rd Paul Hoffman 0-7645-0776-1

Perl for Oracle DBAs 1st Andy Duncan, Jared Still 0-596-00210-6

Perl for System Administration 1st David N. Blank-Edelman 1-56592-609-9

Perl for Web Site Management 1st John Callendar 1-56592-647-1

Perl! I Didn’t Know You Could Do That ... 1st Martin C. Brown 0-7821-2862-9

Perl in a Nutshell 1st Ellen Siever, Stephen Spainhour, Nathan Patwardhan 1-56592-286-7

Perl & LWP 1st Sean M. Burke 0-596-00178-9

Perl Resource Kit 1st Ellen Siever, David Futato 1-56592-370-7

Perl, The Programmer’s Companion 1st Nigel Chapman 0-471-97563-X

Perl Weekend Crash Course 1st Joe Merlino 0-7645-4827-1

Perl & XML 1st Erik T. Ray, Jason McIntosh 0-596-00205-X

Perl: Your Visual Blueprint for Building Perl Scripts 1st Paul Whitehead, Eric Kramer 0-7645-3478-5

Perl/Tk Pocket Reference 1st Stephen Lidie 1-56592-517-3

Permachart Quick Reference Guide: Perl Programming 1st D. Gargaro 1-55080-407-3

Proceedings of the Perl Conference 4.0 1st Jon Orwant (Editor) 0-596-00013-8

Professional Perl Development 1st Randy Kobes, Peter Wainwright, Shishir Gundavaram 1-861004-38-9

Professional Perl Programming 1st Peter Wainwright 1-861004-49-4

Programming Perl 1st Larry Wall, Randal Schwartz 0-937175-64-1

Programming Perl 2nd Larry Wall, Tom Christiansen, Randal Schwartz 1-56592-149-6

Programming Perl 3rd Larry Wall, Tom Christiansen, Jon Orwant 0-596-00027-8

Programming Perl 5.004 Quick Reference 1st Johan Vromans 1-56592-187-9-x

Programming Perl in the .NET Environment 1st Yevgeny Menaker, Michael Saltzman, Robert Oberg 0-13-065206-7

Programming the Network with Perl 1st Paul Barry 0-471-48670-1

Programming the Perl DBI 1st Alligator Descartes & Tim Bunce 1-56592-699-4

WHC Library

Appendix

276 Well House Consultants

Programming Web Graphics with Perl & GNU Software 1st Shawn P. Wallace 1-56592-478-9

Teach Yourself CGI Programming with Perl 5 in a week 1st Eric Herrmann 1-57521-009-6

Teach Yourself Perl 5 in 21 Days 2nd David Till 0-672-30894-0

Teach Yourself Perl in 24 Hours 1st Clinton Pierce 0-672-31773-7

The Perl CD Bookshelf 1st best-selling titles on CD 1-56592-462-2

The Perl CD Bookshelf 2nd various 0-596-00164-9

Web Client Programming with Perl 1st Clinton Wong 1-56592-214-X

Web Development with Apache and Perl 1st Theo Petersen 1-930110-06-5

Web, Graphics & Perl/Tk 1st Jon Orwant 0-596-00311-0

Web Services with Perl 1st Randy Ray, Pavel Kulchenko 0-596-00206-8

Win32 Perl Programming: The Standard Extensions 1st Dave Roth 1-57870-067-1

Win32 Perl Scripting 1st Dave Roth 1-57870-215-1

Writing Apache Modules with Perl and C 1st Lincoln Stein, Doug MacEachern 1-56592-567-X

Writing Perl Modules for CPAN 1st Sam Tregar 1-59059-018-X

XML Processing with Perl, Python, and PHP 1st Martin C. Brown 0-7821-4021-1

PHP
title edition author(s) ISBN

Advanced PHP for Web Professionals 1st Christopher Cosentino 0-13-008539-1

Beginning PHP4 1st Choi, Kent, Lea, Prasad, Ullman 1-861003-73-0

Core PHP Programming 2nd Leon Atkinson 0-13-089398-6

Create Dynamic Web Pages Using PHP and MySQL 1st David Tansley 0-201-73402-8

Dreamweaver MX: PHP Web Development 1st Gareth Downes-Powell, Tim Green, Bruno Mairlot 1-904151-11-6

Essential PHP for Web Professionals 1st Christopher Cosentino 0-13-088903-2

Making Use of PHP 1st Ashok Appu 0-471-21973-8

PHP Advanced for the World Wide Web: Visual Quickstart 1st Larry Ullman 0-201-77597-2

PHP and MySQL Web Development 1st Luke Welling, Laura Thomson 0-672-31784-2

PHP and MySQL Web Development 2nd Luke Welling, Laura Thomson 0-672-32525-X

PHP Cookbook 1st David Sklar, Adam Trachtenberg 1-56592-681-1

PHP Developer’s Cookbook 1st Sterling Hughes, Andrei Zmievski 0-672-31924-1

PHP Developer’s Cookbook 2nd Sterling Hughes, Andrei Zmievski 0-672-32325-7

PHP Fast & Easy Web Development 2nd Julie Meloni 1-931841-87-X

PHP for the World Wide Web - Visual Quickstart 1st Larry Ullman 0-201-72787-0

PHP Functions: Essential Reference 1st Zak Greant. Graeme Merrall, Brett Michlitsch, Torben Wilson 0-7357-0970-X

PHP Graphics: Generating Images on the Fly 1st Allan Kent, Mitja Slenc, Jason Sweat 1-86100-836-8

PHP & MySQL for Dummies 1st Janet Valade 0-7645-1650-7

PHP Pocket Reference 1st Rasmus Lerdorf 1-56592-769-9

PHP Pocket Reference 2nd Rasmus Lerdorf 0-596-00402-8

PHP: Your visual blueprint for creating open source, server-side context 1st Paul Whitehead, Joel Desamero 0-7645-3561-7

PHP4 Bible 1st Tim Converse and Joyce Park 0-7645-4716-X

Professional PHP Programming 1st Castagnetto, Rawat, Schumann, Scollo, Velith 1-861002-96-3

Professional PHP4 Multimedia Programming 1st Kent, O’Dell, Chase, Rosa, Abraham, Suyoto, Apshankar 1-861007-64-7

Professional PHP4 Web Development Solutions 1st Dash, Waters, Gianotto, Endrerud, Anton, Stephens, Solin 1-861007-43-4

Programming PHP 1st Rasmus Lerdorf, Kevin Tatroe 1-56592-610-2

Teach Yourself PHP in 24 Hours 2nd Matt Zandstra 0-672-32311-7

Web Application Development with PHP4.0 1st Tobias Ratschiller, Till Gerken 0-7357-0997-1

Web Database Applications with PHP & MySQL 1st Hugh Williams, David Lane 0-596-00041-3

XML and PHP 1st Vikram Vaswani 0-7357-1227-1

MySQL and Other Relational Databases
title edition author(s) ISBN

Beginning Databases with MySQL 1st Neil Matthew, Richard Stones 1-861006-92-6

dBase Instant Reference 1st Alan Simpson 0-89588-484-4

Managing & Using MySQL 2nd George Reese, Randy Jay Yarger, Tim King, Hugh E. Williams 0-596-00211-4

MySQL 1st Paul DuBois 0-7357-0921-1

MySQL 2nd Paul DuBois 0-7357-1212-3

MySQL and JSP Web Applications 1st James Turner 0-672-32309-5

MySQL and Perl for the Web 1st Paul DuBois 0-7357-1054-6

MySQL Cookbook 1st Paul DuBois 0-596-00145-2

MySQL Pocket Reference 1st George Reese 0-596-00446-X

MySQL & mSQL 1st Randy Jay Yarger, George Reese, Tim King 1-56592-434-7

MySQL & PHP from scratch 1st Wade Maxfield 0-7897-2440-5

MySQL Reference Manual 1st Michael “Monty” Widenius, David Axmark, MySQL AB 0-596-00265-3

MySQL: Visual Quickstart Guide 1st Larry Ullman 0-321-12731-5

MySQL/PHP Database Applications 1st Brad Bulger, Jay Greenspan 0-7645-3537-4

Oracle & Open Source 1st Andy Duncan, Sean Hull 0-596-00018-9

Sequence Analysis in a Nutshell 1st Scott Markel, Darryl León 0-596-00494-X

SQL for Dummies 4th Allen G. Taylor 0-7645-0737-0

SQL in a Nutshell 1st Daniel Kline, Kevin Kline 1-56592-744-3

SQL Performance Tuning 1st Peter Gulutzan, Trudy Pelzer 0-201-79169-2

SQL: Visual Quickstart Guide 1st Chris Fehily 0-321-11803-0

Teach Yourself SQL in 10 Minutes 2nd Ben Forta 0-672-32128-9

The Linux Database 1st Fred Butzen, Dorothy Forbes 1-55828-491-5

Using SQL 1st James Grodd, Paul Weinberg 0-07-881524-X

Tcl, Tcl/Tk and Expect
title edition author(s) ISBN

Effective Tcl/Tk Programming 1st Mark Harrison, Michael McLennan 0-201-634747-0

Exploring Expect 1st Don Libes 1-56592-090-2

Graphical Applications with Tcl & Tk 2nd Eric Foster-Johnson 1-55851-569-0

Practical Programming in Tcl and Tk 2nd Brent B. Welch 0-13-616830-2

Appendix

Learning to Program in Perl 277

Practical Programming in Tcl and Tk 3rd Brent B. Welch 0-13-022028-0

Tcl and the Tk Toolkit 1st John K. Ousterhout 0-201-63337-X

Tcl & Tk Multimedia Training Course 1st Brent Welch, Dave Zeltserman 0-13-080756-7

Tcl/Tk for Dummies 1st Alex Francis, Tim Webster 0-7645-0152-6

Tcl/Tk for Real Programmers 1st Clif Flynt 0-12-261205-1

TCL/TK in a Nutshell, A Desktop Reference 1st Paul Raines, Jeff Tranter 1-56592-433-9

Tcl/Tk Pocket Reference 1st Paul Raines 1-56592-498-3

Tcl/Tk Programmer’s Reference 1st Christopher Nelson 0-07-212004-5

TCL/TK Tools 1st Mark Harrison 1-56592-218-2

Teach Yourself Tcl/Tk in 24 Hours 2nd Venkat Sastry, Lakshmi Sastry 0-672-31749-4

Web Tcl Complete 1st Steve Ball 0-07-913713-X

Ruby
title edition author(s) ISBN

Programming Ruby: The Pragmatic Programmer’s Guide 2nd David Thomas, Andrew Hunt 0-201-71089-7

Ruby Developer’s Guide 1st Robert Feldt, Lyle Johnson, Michael Neumann 1-928994-64-4

Ruby in a Nutshell 1st Yukihiro Matsumoto 0-596-00214-9

Java (including Servlets and JSP)
title edition author(s) ISBN

Advanced JavaServer Pages 1st David M. Geary 0-13-030704-1

Ant Developer’s Handbook 1st Williamson, Pepperdine, Gibson, Wu 0-672-32426-1

Ant: The Definitive Guide 1st Jesse Tilly, Eric Burke 0-596-00184-3

Beginning Java 1st Ivor Horton 1-861000-27-8

Beginning Java 2 (JDK 1.3 Edition) 1st Ivor Horton 1-861003-66-8

Concurrent Programming in Java 2nd Doug Lea 0-201-31009-0

Core Java 1st Gary Cornell, Cay Horstmann 0-13-565755-5

Core Java 2 Volume I-Fundamentals 5th Cay S. Horstmann, Gary Cornell 0-13-089468-0

Core Java 2 Volume II-Advanced Features 5th Gary Cornell, Cay S. Horstmann 0-13-092738-4

Core JFC 2nd Kim Topley 0-13-090581-X

Core JSP 1st Damon Hougland, Aaron Tavistock 0-13-088248-8

Creating Effective JavaHelp 1st Kevin Lewis 1-56592-719-2

Database Programming with JDBC and Java 2nd George Reese 1-56592-616-1

Developing Java Servlets 2nd James Goodwill 0-672-32107-6

Effective Java Programming Language Guide 1st Joshua Bloch 0-201-31005-8

Enterprise JavaBeans 1st Richard Monson-Haefel 1-56592-605-6

Enterprise JavaBeans 3rd Richard Monson-Haefel 0-596-00226-2

Inside Java2 Platform Security 2nd Li Gong 0-201-31000-7

Inside the Java Virtual Machine 1st Bill Venners 0-07-913248-0

Java and XSLT 1st Eric M. Burke 0-596-00143-6

Java by Example 2nd Jerry Jackson, Alan McClellan 0-13-272295-X

Java Cookbook 1st Ian F. Darwin 0-596-00170-3

Java Developer's Reference 1st Cohn, Morgan, Morrison, Nygard, Joshi, Trinko 1-57521-129-7

Java Development with Ant 1st Erik Hatcher, Steve Loughran 1-930110-58-8

Java Enterprise in a Nutshell 1st David Flanagan, Jim Farley, William Crawford, Kris Magnusson 1-56592-483-5

Java Examples in a Nutshell 1st David Flanagan 1-56592-371-5

Java Examples in a Nutshell 2nd David Flanagan 0-596-00039-1

Java for the World Wide Web - Visual Quickstart 1st Dori Smith 0-201-35340-7

Java Foundation Classes in a Nutshell 1st David Flanagan 1-56592-488-6

Java in a Nutshell 2nd David Flanagan 1-56592-262-X

Java in a Nutshell 3rd David Flanagan 1-56592-487-8

Java in a Nutshell 4th David Flanagan 0-596-00283-1

Java Reference Library 1st David Flanagan 1-56592-304-9

Java RMI 1st William Grosso 1-56592-452-5

Java Servlet Programming 1st William Crawford, Jason Hunter 1-56592-391-X

Java Servlet Programming 2nd William Crawford, Jason Hunter 0596-00040-5

Java Threads 2nd Scott Oaks, Henry Wong 1-56592-418-5

Java & XML 2nd Brett McLaughlin 0-596-00197-5

JavaServer Pages Pocket Reference 1st Hans Bergsten 0-596-00231-9

JFC Java Foundation Classes 1st Daniel I. Joshi, Pavel A. Vorobiev 0-7645-8041-8

JSP, Servlets, and MySQL 1st David Harms 0-7645-4787-9

Just Java 2nd Perter van der Linden 0-13-272303-4

Jython Essentials 1st Samuele Pedroni, Noel Rappin 0-596-00247-5

Learning Java 2nd Pat Niemeyer, Jonathan Knudsen 0-596-00285-8

Professional Java Server Programming: J2EE Edition 1st various 1-861004-65-6

Programming with Java! 1st Tim Ritchey 1-56205-533-X

Pure JFC Swing 1st Satyaraj Pantham 0-672-31423-1

Quick Start: Borland JBuilder 1st Inprise Corporation part JBE1330WW21000

Special Edition Using Java 1.2 4th Joseph Weber 0-7897-1529-5

Struts Kick Start 1st James Turner, Kevin Bedell 0-672-32472-5

Teach Yourself Java 1.1 Programming in 24 hours 1st Rogers Cadenhead 1-57521-270-6

Teach Yourself Object Oriented Programming 2nd Anthony Sintes 0-672-32109-2

Teach Yourself Visual J++ in 21 days 1st Winters, Olhasso, Lemay, Perkins 1-57521-158-0

The Java™ Language Specification, Second Edition 2nd Gosling, Joy, Steele, Bracha 0-201-31008-2

The Java™ Tutorial Continued, The Rest of the JDK 1st Campione, Walrath, Huml, Tutorial Team 0-201-48558-3

The Java™ Tutorial, Third Edition 3rd Campione, Walrath, Huml, Tutorial Team 0-201-70393-9

Thinking in Java 2nd Bruce Eckel 0-13-027363-5

Python
title edition author(s) ISBN

Learn to Program Using Python 1st Alan Gauld 0-201-70938-4

Appendix

278 Well House Consultants

Learning Python 1st Mark Lutz, David Ascher 1-56592-464-9

Programming Python 1st Mark Lutz 1-56592-197-6

Python and Tkinter Programming 1st John Grayson 1-884777-81-3

Python & XML 1st Christopher Jones, Fred Drake, Jr. 0-596-00128-2

Python Annotated Archives 1st Martin C. Brown 0-07-212104-1

Python Cookbook 1st Alex Martelli, David Ascher 0-596-00167-3

Python in a Nutshell 1st Alex Martelli 0-596-00188-6

Python Programming on Win32 1st Mark Hammond, Andy Robinson 1-56592-621-8

Python Programming with Java Class Libraries 1st Richard Hightower 0-201-61616-5

Python Standard Library 1st Fredrik Lundh 0-596-00096-0

Python Visual Quickstart Guide 1st Chris Fehily 0-201-74884-3

The Quick Python Book 1st Daryl Harms, Kenneth McDonald 1-884777-74-0

C and C++
title edition author(s) ISBN

Building Cocoa Applications: A Step-by-Step Guide 1st Simson Garfinkel, Micheal Mahoney 0-596-00235-1

C By Example 1st Greg Perry 0-88022-823-X

C++ for Linux 1st Jesse Liberty, David B. Horvath 0-672-31895-4

C Programming in a Unix Environment 1st Judy Kay, Bob Kummerfeld 0-201-12912-4

Learning Cocoa with Objective-C 2nd James Davidson 0-596-00301-3

Objective-C Pocket Reference 1st Andrew Duncan 0-596-00423-0

Standard C 1st P. J. Plauger, Jim Brodie 1-55615-158-6

Turbo C++ Programmer's Guide 1st Borland part 14MN-CND02-10

Turbo C++ User's Guide 1st Borland part 14MN-CND01-10

Turbo Vision for C++ User's Guide 1st Borland part 14MN-TVC01

Other programming languages
title edition author(s) ISBN

A Guide to Cobol Programming 2nd Umberto Garbassi, Daniel D. McCracken 0-471-58243-3

Programming in Standard Fortran 77 1st A. Balfour, D. H. Marwick 0-435-77486-7

Programming and Program design (not language specific)
title edition author(s) ISBN

80386: A Programming & Design Handbook 2nd Don Brumm, Penn Brumm 0-8306-3237-9

Bad Software 1st Cem Kaner, David Pels 0-471-31826-4

Developing Bioinformatics Computer Skills 1st Cynthia Gibas, Per Jambeck 1-56592-664-1

Object Solutions, Managing the Object-Oriented Project 1st Grady Booch 0-8053-0594-7

Open Source Web Development with LAMP 1st James Lee, Brent Ware 0-201-77061-X

Physics for Game Developers 1st David Bourg 0-596-00006-5

Teach Yourself Beginning Programming in 24 Hours 1st Greg Perry 0-672-31355-3

The Computer Desktop Encyclopedia 2nd Alan Freedman 0-8144-7985-5

The Practice of Programming 1st Brian W. Kernighan, Rob Pike 0-201-61586-X

UML Distilled 2nd Fowler, Scott 0-201-65783-X

UML in a Nutshell 1st Sinan Si Alhir 1-56592-448-7

UML Toolkit 1st Hans-Erik Eriksson, Magnus Penker 0-471-19161-2

Web Server Content and Design
title edition author(s) ISBN

Designing Web Usability 1st Jakob Nielson 1-56205-810-X

Dynamic HTML: The Definitive Reference 1st Danny Goodman 1-56592-494-0

Flash 4 for Windows and Macintosh - Visual Quickstart 1st Katherine Ulrich 0-201-35473-X

Flash™ 4 Magic 1st David J. Emberton, J. Scott Hamlin 0-7357-0949-1

Foundations of World Wide Web Programming with HTML & CGI 1st Tittel, Gaither, Hassinger, Erwin 1-56884-703-3

Hip Pocket Guide to HTML 3.2 1st Ed Tittel, James Michael Stewart 0-7645-8017-5

HTML 4 for the World Wide Web - Visual Quickstart 4th Elizabeth Castro 0-201-35493-4

HTML for the World Wide Web - Visual Quickstart 2nd Elizabeth Castro 0-201-68862-X

HTML Pocket Reference 1st Jennifer Niederst 1-56592-579-3

HTML Sourcebook 2nd Ian S. Graham 0-471-14242-5

HTML: The Definitive Guide 2nd Chuck Musciano, Bill Kennedy 1-56592-235-2

HTML: The Definitive Guide 3rd Chuck Musciano, Bill Kennedy 1-56592-492-4

HTML Web Magic 1st Ardith Ibanez, Natalie Zee 1-56830-335-1

HTML & XHTML: The Definitive guide 5th Chuck Musciano, Bill Kennedy 0-596-00382-X

Instant IE4 Dynamic HTML (IE4 Edition) 1st Alex Homer, Chris Ullman 1-861000-68-5

JavaScript for the World Wide Web - Visual Quickstart 1st Ted Gesing, Jeremy Schneider 0-201-68814-X

JavaScript for the World Wide Web - Visual Quickstart 3rd Tom Negrino, Dori Smith 0-201-35463-2

JavaScript in easy steps 1st Mike McGrath 1-874029-89-X

JavaScript & Netscape Wizardry 1st Dan Shafer 1-883577-86-1

JavaScript Pocket Reference 1st David Flanagan 1-56592-521-1

JavaScript The Definitive Guide 2nd David Flanagan 1-56592-234-4

Learning WML & WMLScript 1st Martin Frost 1-56592-947-0

Macromedia Dreamweaver for Windows & Macintosh 1st J. Tarin Towers 0-201-84445-1

Permachart Quick Reference Guide: HTML 4 1st M. Seringhaus 1-55080-382-4

Teach Yourself JavaScript in a Week 1st Arman Danesh 1-57521-073-8

Teach Yourself Web Publishing with HTML Laura Lemay 0-672-30667-0

The Book of Zope 1st Beehive, L.L.C. 1-886411-57-3

Using HTML special Tom Savola 0-797-0236-3

WAP in easy steps 1st Mike McGrath 1-84078-112-2

Web Design in a Nutshell 1st Jennifer Niederst 1-56592-515-7

Webmaster in a Nutshell 1st Stephen Spainhour, Valerie Quercia 1-56592-229-8

Zope Web Application Construction Kit 1st Brockmann, Kirchner, Lühnsdorf, Pratt 0-672-32133-5

Appendix

Learning to Program in Perl 279

Web Client (Browser) topics - HTML, CSS, JavaScript
title edition author(s) ISBN

CCS Pocket Reference 1st Eric Meyer 0-596-00120-7

Content Management Systems 1st Dave Addey, James Ellis, Phil Suh, David Thiemecke 1-904151-06-X

Creating Stores on the Web 2nd Ben Sawyer, Dave Greely, Joe Cataudella 0-201-70005-0

Dreamweaver MX Magic 1st various authors 0-7357-1179-8

Information Architecture for the World Wide Web 1st Louis Rosenfeld, Peter Morville 1-56592-282-4

Information Architecture for the World Wide Web 2nd Louis Rosenfeld, Peter Morville 0-596-00035-9

Looking Good Online 1st Steve Bain, Daniel Gray 1-56604-469-3

Mining the Web 1st Gordon Linoff, Michael Berry 0-471-41609-6

Practical Internet Groupware 1st Jon Udell 1-56592-537-8

The Design of Sites 1st Douglas Van Duyne, James Landay. Jason Hong 0-201-72149-X

Usable Forms for the Web 1st Andy Beaumont, Jon James, Jon Stephens, Chris Ullman 1-904151-09-4

Web Design for Dummies 1st Lisa Lopuck 0-7645-0823-7

Web Design Templates Sourcebook 1st Lisa Schmeiser 1-56205-754-5

Web Navigation, Designing the User Experience 1st Jennifer Fleming 1-56592-351-0

Web Security & Commerce 1st Simpson Garfinkel with Gene Spafford 1-56592-269-7

Apache, IIS, Tomcat and Web Server Admin
title edition author(s) ISBN

Apache Pocket Reference 1st Andrew Ford 1-56592-706-0

Apache, The Definitive Guide 2nd Ben Laurie, Peter Laurie 1-56592-528-9

HTTP Pocket Reference 1st Clinton Wong 1-56592-862-8

Mastering Tomcat Development 1st Peter Harrison, Ian McFarland 0-471-23764-7

Professional Apache Tomcat 1st various authors 1-861007-73-6

Programming Web Services with SOAP 1st Pavel Kulchenko, James Snell, Doug Tidwell 0-596-00095-2

Running a Perfect Web Site with Apache 1st Brian Behlendorf, David Chandler 0-7897-0745-4

Web Services Essentials 1st Ethan Cerami 0-596-00224-6

ASP, .NET, C# etc.
title edition author(s) ISBN

ASP in a Nutshell 1st A. Keyton Weissinger 1-56592-490-8

C# Essentials 1st Ben Albahari, Peter Drayton, Brad Merrill 0-596-00079-0

C# Programming With the Public Beta 1st Harvey, Robinson, Templeman, Watson 1-861004-87-7

Teach Yourself Active Server Pages 2.0 in 21 Days 1st Sanjaya Hettihewa 0-672-31333-2

XML and XSLT
title edition author(s) ISBN

Learning XML 1st Erik T. Ray 0-596-00046-4

Permachart Quick Reference Guide: XML 1st D. Gargaro 1-55080-454-5

Professional XML Web Services 1st various 1-861005-09-1

Programming Web Services with XML-RPC 1st Edd Dumbill, Joe Johnston, Simon St. Laurent 0-596-00119-3

XML Elements of Style 1st Simon St. Laurent 0-07-212220-X

XML for the World Wide Web - Visual Quickstart 1st Elizabeth Castro 0-201-71098-6

XML in a Nutshell 1st Elliotte Rusty Harold, W. Scott Means 0-596-00058-8

XML Pocket Reference 1st Robert Eckstein 1-56592-709-5

XML Schema 1st Eric van der Vlist 0-596-00252-1

XPath and XPointer 1st John E. Simpson 0-596-00281-2

XSLT 1st Doug Tidwell 0-596-00053-7

Web overviews and general subjects
title edition author(s) ISBN

Core Web Programming 1st Marty Hall 0-13-625666-X

Fast Track Web Programming 1st Dave Cintron 0-471-32426-4

Google Hacks: 100 Industrial-Strength Tips & Tools 1st Tara Calishain & Rael Dornfest 0-596-00447-8

Internet & World Wide Web How to Program 2nd Harvey Deitel, Paul Deitel, Tem Nieto 0-13-030897-8

.net All you need to know about The Internet 1st Davey Winder 1-85870-064-7

NetLingo 1st Erin Jansen 0-9706396-7-8

The Internet Yellow Pages 1st Harley Hahn, Rick Stout 0-07-882-23-5

The Whole Internet User’s Guide & Catalog 2nd Ed Krol 1-56592-063-5

The World Wide Web Unleashed 1st John December, Neil Randall 0-672-30617-4

The World-Wide Web, Mosaic and More 1st Jason J. Manger 0-07-709132-9

Web Programming: Building Internet Applications 1st Chris Bates 0-471-49669-3

Web Programming Languages Sourcebook 1st Gordon McComb 0-471-17576-5

Linux
title edition author(s) ISBN

Essential System Administration 3rd Æleen Frisch 0-596-00343-9

Installing OpenLinux and StarOffice for Dummies 1st Jon Hall, Nicholas Wells, Michael Meadhra MM157

Just For Fun 1st Linus Torvalds, David Diamond 1-58799-080-6

Learning the bash Shell 2nd Cameron Newham, Bill Rosenblatt 1-56592-347-2

Linux! 2nd Nicholas D. Wells 0-7821-2935-8

Linux in a Nutshell 3rd Stephen Figgins, Jessica P. Hekman, Ellen Siever, Stephen Spainhour 0-596-00025-1

Linux System Administration Handbook Mark Komarinski, Cary Collett 0-13-680596-5

Linux: The Complete Reference 2nd Richard Petersen 0-07-882461-3

Linux Unleashed 2nd Kamran Husain, Timothy Parker 0-672-30908-4

Permachart Quick Reference Guide: Linux 1st D. Gargaro 1-55080-350-6

Rebel Code 1st Glyn Moody 0-713-99520-3

Red Hat Linux 3rd David Pitts, Bill Ball 0-672-31410-X

Red Hat Linux for Dummies Jon Hall, Paul G. Sery 0-7645-0663-3

Running a Perfect Internet Site with Linux 1st Dee-Ann LeBlanc 0-7897-0514-1

Appendix

280 Well House Consultants

SSH, The Secure Shell: The Definitive Guide 1st Daniel Barrett, Richard Silverman 0-596-00011-1

The Cathedral & the Bazaar 1st Eric S. Raymond 1-56592-724-9

The Complete Reference: Red Hat Linux 1st Richard Petersen 0-07-212535-7

The Linux Web Server CD Bookshelf 1st Stephen Figgins, Jessica P. Heckman, Ellen Siever, Stephen Spainhour 0-596-00208-4

vi Editor Pocket Reference 1st Arnold Robbins 1-56592-497-5

Mac OS X
title edition author(s) ISBN

Learning Unix for Mac OSX 1st Dave Tylor, Jerry Peek 0-596-00342-0

Macintosh Trouble Shooting Pocket Guide 1st David Lerner, Aaron Freimark 0-596-00443-5

Mac OS X for Unix Geeks 1st Brian Jepson, Ernest Rothman 0-596-00356-0

Mac OS X in a Nutshell 1st Jason McIntosh, Chuck Toporek, Chris Stone 0-596-00370-6

Mac OS X Pocket Guide 2nd Chuck Toporek 0-596-00458-3

Mac OS X The Missing Manual 8th David Pogue 0-596-00082-0

Mac OS X Unleashed 1st John Ray, William Ray 0-672-32229-3

Unix for Mac OS X 1st Matisse Enzer 0-201-79535-3

Unix
title edition author(s) ISBN

Solaris System Administrator’s Guide 2nd Janice Winsor 1-57870-040-X

The Unix CD Bookshelf, version 2.1 2nd various 0-596-00000-6

UNIX in a Nutshell: System V Edition 3rd Arnold Robbins 1-56592-427-4

Unix in a Nutshell: System V & Solaris 2.0 2nd Daniel Gilly and staff 1-56592-001-5

Unix Primer Plus 1st Mitchell Waite, Donald Martin, Stephen Prata 0-672-22028-8

Unix System Security 2nd Rik Farrow 0-201-57030-0

Unix System V Release 4 Administration 2nd David Fiedler, Bruce Hunter, Ben Smith 0-672-22810-6

Windows
title edition author(s) ISBN

Essential Windows NT System Administration 1st Æleen Frisch 1-56592-274-3

Mastering Windows XP Professional 2nd Mark Minasi 0-7821-4114-5

Networking
title edition author(s) ISBN

An Introduction to ATM Technology 1st Marc Boisseau, Michel Demange, Jean-Marie Munier 0-442-01994-7

ATM Networks 1st Othmar Kyas 0-442-02000-2

Building Internet Firewalls 1st D. Brent Chapman, Elizabeth D. Zwicky 1-56592-124-0

Cisco TCP/IP Routing Professional Reference 2nd Chris Lewis 0-07-041130-1

DNS and Bind 3rd Paul Albitz, Cricket Liu 1-56592-512-2

Managing Internet Information Services 1st Cricket Liu, Jerry Peek, Russ Jones, Bryan Buus, Adrian Nye 1-56592-062-7

Protecting Networks with SATAN 1st Martin Freiss 1-56592-425-8

Running Weblogs with Slash 1st chromatic, Brian Aker, Dave Krieger 0-596-00100-2

Samba Black Book 1st Dominic Baines 1-57610-455-9

Sendmail 1st Bryan Costales, Eric Allman, Neil Rickert 1-56592-056-2

Stopping Spam 1st Alan Schwartz, Simson Garfinkel 1-56592-388-X

The Cuckoo’s Egg 1st Cliff Stoll 0-7434-1146-3

The Networking CD Bookshelf 1st various 1-56592-523-8

Computer Graphics
title edition author(s) ISBN

An Introduction to Ray Tracing 1st Andrew S. Glassner 0-12-286160-4

Computer Graphics 1st Roy A Plastock, Gordon Kalley 0-07-050326-5

Computer Graphics 2nd Foley, Van Dam, Feiner, Hughes 0-201-12110-7

Designing Web Graphics.4 4th Lynda Weinman 0-7357-1079-1

Encyclopedia of Graphics File Formats 1st James D. Murray, William vanRyper 1-56592-058-9

Encyclopedia of Graphics File Formats 2nd James D. Murray, William vanRyper 1-56592-161-5

Fundamentals of Interactive Computer Graphics 1st J.D. Foley, A. Van Dam 0-201-14468-9

Interactive Computer Graphics 1st Peter Burger, Duncan Gillies 0-201-17439-1

PNG The Definitive Guide 1st Greg Roelofs 1-56592-542-4

Power Graphics Programming 1st Michael Abrash 0-88022-500-9

Procedural Elements for Computer Graphics 1st David F. Rogers 0-07-053534-5

Programmer’s Guide to the EGA and VGA Cards 1st Richard F. Ferraro 0-201-12692-3

SVG Essentials 1st J. David Eisenberg 0-596-00223-8

The Elements of Color 1st Johannes Itten 0-471-28929-9

X Windows and Motif
title edition author(s) ISBN

An X/Motif Programmer's Primer 1st Fintan Culwin 0-13-101841-8

Building OSF/Motif Applications: A Practical Introduction 1st Mark J. Sebern 0-13-122409-3

Introduction to the X Window System 1st Oliver Jones 0-13-499997-5

The X Window System in a Nutshell 1st O’Reilly staff 0-937175-24-2

X and Motif Quick Reference Guide 2nd Randi J. Rost 1-5555-8118-8

X Windows System User's Guide Volume 3 2nd Valerie Quercia, Tim O'Reilly 0-937175-36-6

Xlib Programming Manual Volume 1 1st Adrian Nye 0-937175-27-7

Xlib Reference Manual Volume 2 1st Adrian Nye 0-937175-28-5

Other books
title edition author(s) ISBN

Computer Law 4th Chris Reed, John Angel 1-84174-016-0

Dictionary of Computer and Internet Terms 6th Douglas Downing, Michael Covington, Melody Covington 0-7641-0094-7

FileMaker Pro 5 for Windows & Macintosh 4th Nolan Hester 0-201-70417-X

Appendix

Learning to Program in Perl 281

MP3 The Definitive Guide 1st Scot Hacker 1-56592-661-7

Palm Pilot:The Ultimate Guide 2nd David Pogue 1-56592-600-5

Type & Typography 1st Phil Baines, Andrew Haslam 1-85669-244-2

Wired Style: Principles of English Usage in the Digital Age 1st Constance Hale, Jessie Scanlon 0-7679-0372-2

Appendix

282 Well House Consultants

Learning to Program in Perl 281

1 Index

A

addition 27
alarm 217, 218
anchor 79, 162
applet 184
arithmetic operations 27
arrays 105
ASCII string 177
ASCII text 31
assertations 252
assign 57
assignment 23, 35, 109
associative array 145
attr 244
average 28

B

backquotes 204
backslash 21
base 10 101
base 16 59, 101
base 8 59, 101
BASH 44
batch files 48
BEGIN 250
Benchmark 234
BIGINT 246
BIGNUM 246
binary 177
binary text 176
binding 246, 247
bitwise 176
bless 244
block 53, 54, 86, 113, 174

nesting 54
Bourne shell 43, 44
braces 54, 55, 86
brackets 54, 55, 75, 80, 88,

90, 105, 109, 165, 176
breaksw 249
browser 183
buffer 141
byte code 48
byte position 177

C

C shell 43, 44, 45
calculation 27
calculator 15
call 131, 132, 134
call (a subroutine) 121
calls 9
capturing 253
Carp 234
case

changing 176
forcing 75

CATCH 251
catch 250
CGI 237
CGI script 141
CGI.pm 263
character

- 80
-- 59
! 45
!= 54

!~ 77
" 49, 74
45, 108
#! 45
$ 15, 36, 75, 77, 79, 105
$\ 140
$_ 142
$| 141
$ARG 142
% 100, 146
%% 101
%c 101
%d 101
%ENV 156
%o 101
%s 101
%x 101
&& 87, 88
* 77, 82, 137
+ 82
++ 59
. 74, 81
.. 112
: 91
; 34, 49
< 54, 76
<= 54
<=> 151
<> 112, 142
= 35, 109
== 54, 76
=~ 77, 142, 162, 163
> 54, 96
>= 54
>> 96
? 82, 137
@ 75, 105, 146
@_ 137
@ARGV 137, 156
\" 75
\$ 75
\@ 75, 207
\243 74
\a 74
\b 74
\cJ 74
\D 81
\d 81
\E 75
\e 74
\f 74
\L 75
\l 75
\n 35, 74, 101, 140
\r 74
\S 81
\s 77, 81

\t 74
\U 75
\u 75
\W 81
\w 81
^ 77, 81
{ 54, 89
|| 87, 88
} 54, 89
£ 74
-c 143
-d 99
-e 99
-M 99
-n 143
-p 143
q 75
qw 112
-r 99
-s 99
s 142
-v 143
-w 99, 143
-x 99
x 74
-z 99

character string 36, 73
CHECK 250
child process 258
chmod 44
chomp 41, 73, 112, 113
chop 27, 29, 41, 73, 74, 141,

142, 161
class 120, 135, 244
close 96
cmp 151, 161
code

portable 214
column width, specifying 101
command line 10, 43, 137

options 143
parameter 137

comma-separated list 28
comment 63, 141, 166
comments 18, 21
Common Gateway Interface

(CGI) 185, 188, 263
comparison block 152
compiled language 47, 48
compiler 47, 48, 49, 121
compliment 176
Comprehensive Perl Archive

Network (CPAN) 236, 239,
255

concatenation 244
condition 53, 54
conditional 62

code 9
operators 87
statement 54, 85, 86

Config 198, 234
constant 27, 29, 37, 147, 234

constant number, writing 59
constant text 101
context

double-quote 109
list 109, 146, 163, 166,

200
scalar 109, 146, 166, 200

continue 249
control code 74
convertor 215
counts 82
CPAN 119, 123
create 258
CTRL-Z 176

D

DATA 95
data

reading 39
Data Base Dependant

(DBD) 261
data munging 259
database

enquiries 200
databases 260, 261
dates and times 214
DBD 237
DBI 237
decimal 101, 213
delimiter

alternative 168
DESTROY 250
destroy 258
diagnostics 234
die 96, 99, 234
distribution, perl 119
division 27
Do what I mean (DWIM) 243
dollar character 21
double quotes 21, 75, 76
double-quoted strings 74

E

e modifier 175
each 148
element

referencing within a
list 105

else 86
Embed Perl 263
END 250
English 234
epoch 213, 214, 215
eq 161
error 64
error handling 64
error message 18, 48, 49, 186
errors 19, 20, 120
eval function 175
exception handling 250
executable

path 43
program 48
statement 34, 35

executable statement 18, 21
Expat 261

Index

Index

282 Well House Consultants

Exporter 234

F

false 54
file

closing 96
permissions 44

file handle 20, 29, 39, 95, 98,
99, 121, 142

reading from 96
variable 95
writing to 96

files
.bak 198
.gif 177
.txt 198

FIRST 251
first line

#!/usr/local/bin/perl 45
floating point number 101,

177
flowchart 61, 62, 67
for 249, 250, 259
for loop 89, 90, 91, 113
foreach 115
foreach loop 91, 112, 113,

114
fork 98
form 183, 185, 186
format

control 139
floating point 101
whole number 101

Fortran 47
frame 183
FrontPage 181, 184
fseek 259
ftell 259

G

GdbM 261
ge 161
getnetbyaddr 200
getnetbyname 200
getppid 200
getprotoname 200
getprotonumber 200
getpwnam 200
getpwuid 200
GIF image 184
given 248
global match 166
glueware 97
gmtime 215
Gnome 261
goto 92
grammar 251
graphic image 183
grep 112, 114, 259
grouping 252
gt 161

H

h2xs 257
hash 145, 146, 147, 149, 151,

153, 154, 155, 156, 207
accessing 146
clearing out 156
initialising 156
key 146
structure 145

header 186
here documents 76
hexadecimal 59, 101
home page 183
horizontal ruling 182

HotJava 184
hours 214
HREF parameter 182
HTML 185, 186, 187
HyperText Markup Language

(HTML) 181

I

if 62
if else 88
if statement 53, 54, 86

structure 53
increment 57, 59
increment operator 58
index 74, 116, 145, 161
index number 108
inheritance 135, 244
INIT 250
inner bracket 28
input 61, 65

default 141
installation 10
instance 135
instance variable 120, 145
integer 101, 150
interpreted language 48
interpreter 47, 48, 49
IP address 207

J

Java 48, 121, 184, 197
join 112
JPG image 184

K

KEEP 251
key 148, 151, 153, 156
keyboard 23
Korn shell 43, 44

L

label 91
language compiler 34
LAST 251
last 90, 91, 113
lc 74, 161
lcfirst 74, 161
le 161
left justify 28
length 74, 161
lib 234
libNET 237
libXML 237
libXSLT 237
line, creating new 25
Linux 11, 13, 19, 43, 44, 137,

197, 198, 214
list 75, 105, 106, 113, 146,

147, 148, 183
anonymous 117
build 114
changing 106
extending 106
filter 112
functions 112
length 107, 109, 113
re-order 112
sort 108, 112
splice 116

loader 48
localtime 215
log in 15, 44, 200
logout 137
loop 9, 48, 55, 62, 89, 90, 107,

135, 143, 148, 149, 175,
249

breaking 90

lt 161
LWP 237
Lynx 184

M

Macintosh 14, 47
MacPerl 14, 47
main:: 20
map 115, 259
memory allocation 36
metacharacter 137
metasyntax 252
method 120, 121, 135
method operator 244
minutes 214
mode, multiline 166, 168
modifier 166, 173

match 166
mod-perl 263
module 137
months 214
multidimensional array 205
multiplication 27
my 234
my list 207
my variable 70, 128

N

nawk 100
NDBM 261
ne 161
nested loops 91
Netscape 184
network 200
new line character 21
next 62, 90, 113
no 233
null 54, 148, 156, 176

O

o modifier 175
object files 47
Object Orientation 256, 257
object orientation 135
object oriented 121, 136
octal 59, 101
open 95, 121, 256

file for write 95
opendir 256
operations, order of 37
operator 27, 28, 29, 37, 56,

88, 175, 176
examples of 37
file status 213
list 113
read from 39

options
-w 20, 21

order 28
ordinate 108, 116
our 234
output 61, 64, 140
overload 234

P

pack 112, 258
package 131, 132, 135
parameter, passing 124
Parrot 253
parser 261
Pascal 48
path 43
pattern 120

match operator 77
match space 141

percent character 101
perl

in MS-DOS 47

on the Macintosh 47
on the PC 46

Perl 6 243
perlbug 237
perlcc 237
perldoc 237
pipe 97, 141
Plain Old Documentation

(POD) 231, 257
platforms 9, 10
pod2html 257
pod2latex 237
pod2man 237
pod2ps 257
pod2text 237, 257
podchecker 237
polymorphism 135
pop 112
portable code

writing 198
POSIX 235
POST 251
pragma module 233
PRE 251
print 27, 28, 35, 64, 76, 105,

114, 140, 141, 143, 249
formatted 100, 143

printf 100, 101, 105, 117
process

read to or write from 97
prompt 15, 23, 26
protocol 200
push 112, 113
pwd 137

Q

qx 199

R

read 258
readdir 256
redo 62, 90, 113
reference 135
regular expression 82, 143

efficiency 175
matching 142, 162, 164

regular expressions 66
require 50
return statement 124
reverse 112
right 28
rindex 74, 161
round bracket 28, 29
round brackets, use of 37

S

scalar 106, 108, 109, 112,
114, 116, 121, 145, 146,
161, 163, 244

scalar variable 75, 121
screen

counter 15
locator 15

script 16
search 15

seconds 214
select 259
shell 137, 198
shell script 48
shift 112
sign 177
single block code 119
single-quoted strings 75
sleep 122, 217
slice 116

print 116
Socket 235

Index

Learning to Program in Perl 283

socket 141
Solaris 11, 13, 197, 198
sort 112, 149, 150, 155
splice 112
split 112
sprintf 74, 102, 161
squeeze 176
stack 112
stat 213
statement 28
STDERR 95, 99
STDIN 23, 29, 39, 95, 96, 120,

141, 142, 185, 263
STDOUT 35, 95, 141, 185,

198, 263
strict 70, 128, 234
string 29, 40, 73, 75, 76, 112,

145
comparing 76
comparing to regular

expressions 77
comparison

operators 77
matching 79, 80, 162

string handler 244
Structured Query Language

(SQL) 261
subroutine 68, 119, 120, 123,

124, 125, 128, 131, 132,
135, 152

substitution 173
common 174

substr 74, 161
subtraction 27
swap space 24
Switch 248
symbols 50
syntax 18, 19, 21
sysopen 259

T

table 183
tag 181, 182, 183, 184
talker 16
TC shell 44
test 64
text editor 17, 31
text string 35

comparing 151
tieing 258
time

elapsed 217
timegm 215
timelocal 215
Tk 237
Tk module 261
topicalisation 248
touch command 214
tr 142, 176
true 54
try 250, 251
two-dimensional array 206
typeglob 246

U

uc 74, 161
ucfirst 74, 161
UNDO 251
Unix 44, 197, 198, 214
unpack 112, 177, 258
unshift 112, 114
unsign 177
unstrip 177
until 113
until loop 89, 91
URL 182, 185, 186

encoding 186
use 233

use English 137
use statement 123, 125
UseNet 239

V

variable 23, 24, 25, 26, 27, 29,
35, 36, 37, 40, 68, 73, 107,
113

control buffering 140
control input 140
environment 156
information 138
name 24
named-list 113
rules 35
special 137, 143
using to name a

program 137
vec 259
vectorised operator 246
version number 143

W

warn 234
warning messages 143
warnings 234
web page 141, 184
when 249
while 113, 142, 143

loop 55, 57, 58, 89, 91,
207

statement 54
white space 21, 77, 91, 174,

182
widget 261
Win32 11
Windows 98 11
Windows NT 11, 45, 197, 198
word processors 17
write 258, 260

directly from serial
port 97

X

XML 261
XSLT 261

Y

years 214

About the author

284 Well House Consultants

Behind Learning to Program in Perl: the author

Graham Ellis has a vast background in the computer industry.
After receiving his degree in Computer Science in1976 from City
University, London, he hasn't looked back.

Graham spent seven years leading a team developing cross-
platform products (running on both PCs and Unix systems), from
which he brings an appreciation of product specification, porta-
bility, standards and security.

Many highly technical staff prefer to remain "back room boys",
but Graham has always enjoyed writing and presenting training
courses. Since the first course he wrote and presented (on the
Fortran programming language) in the late ’70s, training has grad-
ually accounted for more and more of his working time. He does,
though, take care to leave time aside for outside interests, family,
and for time to undertake "real work" in the subject areas in which
he teaches. Graham believes in practising what he preaches!

Graham was a user of the Internet before it ever hit big, and,
with his training and support roles, was ideally placed both to
make practical use of the technology and to help others do the
same.

Well House Consultants, Ltd

In 1995, Graham founded Well House Consultants Ltd to
present training courses for others under contract and to develop
his own training material. Well House Consultants specialises in
"niche" courses, the sort of topics that other training organisations
can't provide economically themselves.

Well House Consultants is a partnership between Graham and
his wife Lisa, whom he first noticed on the Internet. Lisa comes
from a graphic arts background and looks after much of the web
site maintenance work, as well as the production of sales material
and manuals, such as this one, and sales enquiries and bookings.
Lisa can be reached by email at lisa@wellho.net, via our main
phone number 01225 708 225, or by fax on 01225 707 126.

In spite of being busy, Graham aims to remain approachable.
Do feel free to email him (graham@wellho.net) if you have any
questions on this material that you can't resolve through normal
channels. If you're interested in booking places on courses, or
seeing if we can help with your onsite requirements, please email
enquiry@wellho.net (that will get you a quicker response if
Graham's out training!) or call up our FAQ by sending a message
to faq@wellho.net.

Thank you for attending this course!

